For Departmental use.

Sutuen of aindia.

DEPAIETMENTAL PAPER-No, 7

THE BAR COMPARISONS OF 1907 AND 1908.

BY
MAJOR H. M. OOWIE, R.E., Dertix Surerintendiant, Subvex of Indid.

PUBLISHED UNDER TEE DIPECTION OF THE SURVEYOR GENERAL OF INDIA.

隹efra 臬un:
PRINTED AT THE CFEICE OF THE TRIGONOMEXRICAL SURVEY.

For Departmental use.

suruey of 新ndia.

DEPARTMENTAL PAPER-No. 7.

THE BAR COMPARISONS

OF 1907 AND 1908.

BY
MAJOR H. M. COWIE, R.E., Deputy Soperintminent, Survis of India.

PMINTED ATJTHE OFFICE IF TEE TRIGONOMETRICAL SUREEX.

PREFACE.

The following pages are based on a report and notes by Major Cowie. Major Cowie was absent on the Turoo-Persian Frontier Commission at the time when the paper was being passed through the press, and some discretion had to be used in deciding what should be printed. In some cases the arrangement and wording was slightly altered when this appeared desirable. Minor inconsistencies were removed whenever these were noticed.

Babu Rasik Chandra Ray of the Computing Office scrutinised the copy and read all the proofs.
$\left.\begin{array}{c}\text { Dehra Dun, } \\ \text { April, 1915. }\end{array}\right\}$
J. de GRAAFF HUNTER.

THE BAR COMPARISONS OF 1907 AND 1908.

During the summer of 1907 the question of adopting the metre as the unit of length in geodetic operations in lndia was brought prominently forward, and the arguments for and against this step were considered and discussed by the Surrey of India and eminent geodesists in England. The immediate cause, which gave rise to this question, was the prospective acquisition by the Survey of India of invar wires for the measurement of bases by the Jäderin method. These wires were to be made and tested at Sévres, where all the apparatus for the construction and the later standardizing of wires is adapted to the metre unit and where customs and procedure have been moulded to suit wires 24 metres in length, this being the length generally adopted by European Geodetic bodies. The Surver of India had to consider whether it would follow European example and use 24 -metre wires, or whether, adbering to the 10 -foot unit upon which all its past geodetic operations were based, it would provide itself with wires whose length was some multiple of this unit. The former alternative involved difficulties of standardizing the wires from time to time in the field and the referring of base measurements of the future to those of the past. With the latter alternative had to be considered the fact that the Indian 10 -foot Bar (made about the year 1830) had now been outclassed by modern standards, both as regards design and construction,also that this standard had already served its purpose as a unit for the Indian Survey and that the time was approaching when this surver* would be linked up with others based on the International Metre as unit. It was finally decided to adopt the metre as the geodetic unit and to use wires of 24 metres length; to procure a new 4 -metre standard bar of invart, for the standardizing of these wires whose length should be known in terms of the International Metre; and, to compare the old $\mathbf{1 0}$-foot Standard Bar A with the International Metre for the connection of future base measurements with those of the past.

[^0]It is true that there already existed a value of the Indian Standard A in terms of the old metre. This value was not obtained, however, from direct comparisons, but through the sister bar B, the bar I_{S} and the Ordnance Yard, \mathbf{Y}_{66}.

The different steps of the deduction are as follows:-

$$
\mathrm{I}_{s}-\mathrm{B}=+86 \cdot 81
$$

millionths of a yard (later on abbreviated into m.y), determined by Clarke's comparisons in 1865 in England.

$$
\mathbf{I}_{s}-\mathbf{A}=+82 \cdot 52 m \cdot y
$$

as derived from the observations made between 1867 and 1870 in India. Combining these two values,

$$
\mathbf{A}=\mathbf{B}+4 \cdot 29 m \cdot y
$$

Further, from Clarke's determinations in $186 \overline{\text { b }}$

$$
\begin{aligned}
& \mathbf{B}=3 \cdot 333,315,90 Y_{55} \\
& \mathbf{A}=3 \cdot 333,320,19 Y_{55}
\end{aligned}
$$

and hence,
also from Clarke's determinations

$$
Y_{\overline{5} 5}=0 \cdot 914,391,43 \mathrm{M}
$$

where M represents the old metre.
Whence is derived

$$
\mathrm{A}=3 \cdot 047,959,42 \mathrm{M}
$$

and by introducing the value of M in terms of the International Metre, the length of A can be referred to the latter.

There were two objections, however, to adopting the relation between A and the International Metre arrived at as outlined above. One was that many stages were involved in the comparison, each step being a possible source of error. The value of B may have been fairly well known in terms of the metre, but to connect A with the metre, recourse had to be made to the comparison of both A and B with the bar I_{S}. Now B was compared with this bar in England in 1865, A was compared with it in India in 1867.70. In the interim, the bar had been conveyed from England to India and the observations available offer no data for ascertaining whether the bar was or was not affected by the journey, and whether the absolute length of the bar on its arrival at Dehra Dūn was the same as it had been at Southampton. The value of the relation between A and the old metre thus depends, in great measure, on the degree of invariability maintained by the bar I_{S} during the period 1865-1870.

The other point was that the date at which the comparison had been made was so far distant, that it was quite reasonable to doubt whether the relationship then ascertained stili held good. It is known that with time metal bars may undergo certain changes which affect their absolute length. The advisability of using for purposes of connecting new geodetic measurements, in terms of one unit, with old work in terms of another, a factor determined 50 years previously and for a metal bar possibly affected by time, was open to doubt.

For these reasons the adoption of 24 -metre wires for the measurement of future geodetic bases necessitated the direct comparison of the Standard of India, Bar A, with the International Metre. For this purpose, the bar had to be sent to the Pavillon Breteuil at Sévres and, in order that some means should be available for indicating whether the absolute length of the bar had been unaffected or not by its transport, and, if affected, of determining the magnitude of the change, it was advisable that careful comparisons should be made in India both before and after its journey to Europe. These comparisons were made in November, December of 1907 and January of 1908 and in November and December of 1908, the bar in the interval going to Sévres and being compared with the International Metre. The comparisons carried out in India were of the Standard Bar A with the cast steel bar I_{S} and the bar I_{B} of Baily's metal (an alloy of copper, tin and zinc).

These two bars I_{S} and I_{B} were made in 1864 by Messrs. Troughton and Simms. The object of their construction was to settle questions that had been raised as to the possible variation of length which the standard might have suffered in the course of its several journeys from the Survey Head Quarters to the various base lines at which it was used.

Our knowledge of the relative lengths of the three bars was based on the following investigations:-

In 1834, and 1835, the bars A and B were compared at Dehra Dūn by Sir George Everest. The result he obtained was

$$
\mathbf{B}-\mathbf{A}=1.24 m . y, \text { afterwards corrected to } 0.64 m . y
$$

This value, however, was not considered a very reliable one, on account of the difficulty there had been of determining the true temperatures of the bars during comparison, by reason both of the particular construction of the thermometers used and the imperfect knowledge of the errors of graduation of their scales.

The value adopted for the absolute expansion of A, in the first discussion of these comparisons, was $22 \cdot 669 \mathrm{~m} . \mathrm{y}$ for $\mathrm{l}^{\circ} \mathrm{F}$. This quantity had been determined by observation at Calcutta in 1832. Further examination of the various comparisons made at the different base lines, between this bar and the Colby compen-
sated bars, showed that this value was probably too large. Further investigations, made in 1870, gave the result $21 \cdot 797 \mathrm{~m} . y^{*}$ which has been employed in the reduction of all later measures made with this bar.

Of the expansion of bar B no direct determinations have ever been made. In the reduction of the $1834-35$ comparisons, the observation equations were therefore formed to involve two unknown quantities, the difference between the lengths of the bars at $62^{\circ} \mathrm{F}$ and the difference of their absolute expansions.

These comparisons between bars B and A, when rediscussed, using the 1870 value of the expansion of \mathbf{A}, gave the result 0.64 m.y, stated above, as the difference between the lengths of the bars and the quantity -0.153 as the difference in the values of their absolute expansions, making that for $\mathrm{B}, 21 \cdot 644 \mathrm{~m} . \mathrm{y}$.

Clarke, in 1865, made comparisons between the bars $\mathrm{B}, \mathrm{I}_{B}, \mathrm{I}_{\mathcal{S}}, \mathrm{O}_{1}, \mathbf{O} \mathrm{I}_{1}$, and Y_{55}, the last three belonging to the Ordnance Survey, and found

$$
\begin{aligned}
& \mathbf{I}_{s}-\mathbf{B}=86.81 \quad m . y \\
& \mathbf{I}_{B}-\mathbf{B}=218.27 \quad,
\end{aligned}
$$

In the reduction of these observations, Clarke assumed that the expansion of B was the same as that of \mathbf{O}_{1}, which had been obtained by comparison with that of OI_{1}. The absolute expansion of this latter bar was determined by direct experiment. The quantity thus deduced for \mathbf{B} was $21 \cdot 532$ m.y.

The expansions used for I_{B} and I_{S} had been determined simultaneously by direct experiment, in 1865, by Clarke. The values were:-

$$
\begin{aligned}
\text { Expansion of } \mathbf{I}_{B} & =32 \cdot 759 \mathrm{~m} . y \\
\mathbf{I}_{S} & =21 \cdot 159 \quad,
\end{aligned}
$$

The combination of Clarke's 1865 determination of the relative lengths of I_{S}, I_{B} and B with Everest's comparison of B and A gave the first available values of I_{S} and I_{B} in terms of A.

From Everest's observations of $\mathbf{1 8 3 4 - 3 5}$, using the later value of the expansion of B, we have

$$
\mathbf{B}-\mathbf{A}=0.64 m . y
$$

Clarke's values of 1865 were

$$
\begin{aligned}
& \mathrm{I}_{s}-\mathrm{B}=86.81 \mathrm{~m} .9 \\
& \mathrm{I}_{\mathrm{B}}-\mathrm{B}=218.27 \ldots
\end{aligned}
$$

from which may be derived

$$
\begin{aligned}
& \mathrm{I}_{S}-\mathrm{A}=87.45 \mathrm{~m} \cdot \mathrm{y} \\
& \mathrm{I}_{B}-\mathrm{A}=218.91
\end{aligned}
$$

It is to be noted, however, that in the two series of comparisons, from which these quantities are deduced, slightly different values were allotted to the absolute expansion of bar B. In the comparisons with \mathbf{A} the expansion was assumed to be $21 \cdot 644_{4}$ and in those with I_{B} and $I_{\mathcal{S}}$ the value $21 \cdot 532$ was used.

The first series of direct comparisons between the three bars A, I_{B} and I_{S} was carried out in 1867 at Dehra, measurements being made of the differences of length for each pair of bars. In the reduction of the observations the expansions adopted for I_{B} and I_{S} were those determined by Clarke in 1865 and for A, the value given by Everest. Thus the following expansions were used :-

Expansion of $\mathrm{I}_{B}=32.759 \mathrm{~m} . y$ per $1^{\circ} \mathrm{F}$.

$$
\begin{array}{llll}
\mathrm{I}_{s}=21 \cdot 159 \quad & " & " & " \\
\mathbf{A}=22 \cdot 669 \quad, & " & "
\end{array}
$$

and the results of these observations were

$$
\begin{aligned}
& \mathbf{I}_{B}-\mathbf{I}_{S}=131 \cdot 40 \mathrm{~m} \cdot y \\
& \mathbf{I}_{B}-\mathbf{A}=221 \cdot 32, " \\
& \mathbf{I}_{S}-\mathbf{A}=89 \cdot 9 \downarrow,
\end{aligned}
$$

In 1870, Mr. J. B. N. Hennessey undertook the redetermination of the expansions of the bars A and \boldsymbol{I}_{S}. With this object, a comprehensive series of experiments was carried out at Mussooree, using apparatus adapted from that employed by Clarke in 1864-65. The results of these observations were

$$
\begin{aligned}
\text { expausion of } A & =21 \cdot 797 \mathrm{~m} \cdot y \text { per } \mathbf{1}^{\circ} \mathrm{F} \\
\mathbf{I}_{S} & =21 \cdot 290, ", ",
\end{aligned}
$$

This value of the expansion of I_{S} was then combined with Clarke's determination, $21 \cdot 159$, (resulting from Clarke's second series of observations) and the mean value thus deduced, $21 \cdot 225$, has been adopted in all measurements in which I_{S} has played a part since 1870. Since that date no further investigations have been made of the absolute expansions of the bars A, I_{B} and I_{S}, the following being accepted as final values :-

Expansion of $\mathbf{A}=21 \cdot 797 \mathrm{~m} . y$ per $1^{\circ} \mathrm{F}$.

$$
\begin{array}{ll}
\mathrm{I}_{S}=21 \cdot 225 & " \\
\mathrm{I}_{B}=32 \cdot 759, & ", \quad "
\end{array}
$$

Using these quantities, the comparisons of 1867 were reconsidered and the values given below deduced.

$$
\begin{aligned}
& \mathbf{I}_{S}-\mathbf{A}=80.84 m . y \text { at } 62^{\circ} \\
& I_{B}-A=212 \cdot 64, \quad, \\
& \mathrm{I}_{B}-\mathrm{I} S=132 \cdot 06 \quad \text {, }
\end{aligned}
$$

Further, discussing the expansion experiments of 1870 by themselves, the relation between I_{S} and A was found to be

$$
\mathbf{I}_{S}-\mathbf{A}=84.03 \text { m.y. }
$$

Four series of comparisons have thus been carried out, involving the bars A, B, I_{B} and I_{S}.

Recapitulating, these are:-

No. of comparisón	Bars compared	Year	Resalts
1	B and A	1834-35	$\mathbf{B}-\mathbf{A}=0.64 \mathrm{~m} . \mathrm{y}$
2	$\mathrm{I}_{S}, \mathrm{I}_{B}$ and B	1865 (a)	$\mathrm{I}_{B}-\mathrm{B}=218.27$,
		(b)	$\mathrm{I}_{S}-\mathrm{B}=86.81 \quad$,
		(c)	$\mathrm{I}_{B}-\mathrm{I}_{S}=131 \cdot 46 \quad$,
3	$\mathrm{I}_{S}, \mathrm{I}_{\boldsymbol{B}}$ and A	1867 (d)	$I_{S}-A=80.84 \quad$,
		(e)	$I_{B}-A=212 \cdot 64$,
		(f)	$\mathrm{I}_{B}-\mathrm{I}_{S}=132.06$,
4	I_{S} and A	1870	$\mathrm{l}_{s}-\mathrm{A}=84.03 \mathrm{\prime}$

By combining results (c) of comparison No. 2 with (e) of comparison No. 3, a value of $I_{S}-A$ is derived, viz. $81 \cdot 18 \mathrm{~m} . y$. Again, combining this value with result (d) of comparison No. 3 and the result of No. 4 comparison, and giving double weight to the latter, we get as a mean value

$$
\mathrm{I}_{S}-\mathbf{A}=82 \cdot 52 m . y
$$

Combining this with Clarke's ralue of $I_{B}-I_{s},+131 \cdot 4.6 \mathrm{~m} . \eta$, we get

$$
I_{B}-A=213.98 \mathrm{~m} . y
$$

In 1870 these were accepted as the most probable values of the differences of length of the three bars.

No further investigations were made until the end of 1907, when the comparisons to be now described, were undertaken. The causes that led to this enquiry have already been stated.

It was at first intended to carry out a complete determination of the coefficients of expansion as well as of the relative lengths of the bars. With this object in view, suitable apparatus was designed. In consequence, however, of the necessary observers having to be obtained from field parties, the normal work of which would be temporarily suspended, the investigation of the expansions which would take a considerable time if results of any value were to be obtained, was alandoned, and the available means devoted to a careful comparison of the relative lengths at temperatures differing but little from $62^{\circ} \mathrm{F}$.

The observations were commenced on 21st November, 1907, and were finished on 11th January, 1908, the observers being Major G. P. Lenox Conyngham, R.E., Captain H. M. Cowie, R.E. and Mr. J. de Graaff Hunter, M.A.

Of the difference $I_{S}-A, 42$ determinations were made, the temperatures during the observations ranging from $56^{\circ} \cdot 5$ to $68^{\circ} \cdot 9$. Of the two bars I_{B} and $\mathbf{A}, 38$ comparisons were carried out at temperatures varying from $\mathbf{5} 5^{\circ} \cdot \boldsymbol{5}$ to $69^{\circ} \cdot 2$.

The final results of the observations were

$$
\mathrm{I}_{s,}-\mathrm{A}=83 \cdot 12 m . y \text { at } 62^{\circ}
$$

the mean temperature during comparison being $61^{\circ} \cdot 15$, and

$$
\mathrm{I}_{B}-\mathrm{A}=196.73 \mathrm{~m} . y \text { at } 62^{\circ}
$$

the mean temperature during comparison being $61^{\circ} \cdot 38$.
The details of these observations are given later. On the conclusion of these investigalions, bar A was sent to Sévres for comparison with the International Metre; after which it was once more returned to Dehra Dün.

On its receipt there, the second series of comparisons was made. This was commenced on 17th November and concluded on 1st December, 1908, the observers being Captains H. H. Turner, R.E. and H. M Cowie, R.E. Twenty sets of comparisons were made of each bar I_{B} and I_{S} with A. In the case of the observations of $I_{S}-A$, the temperatures ranged from $61^{\circ} \cdot 1$ to $65^{\circ} \cdot 0$ and during the comparisons of I_{B} and A, they varied from $57^{\circ} \cdot 0$ to $65^{\circ} \cdot 5$.

The results obtained were

$$
I_{s}-A=81.13 m . y \text { at } 62^{\circ}
$$

the mean temperature being $63^{\circ} \cdot \mathbf{7 4}$,
and

$$
\left.\right|_{B}-A=193.38 \mathrm{~m} . y^{2} \text { at } 62^{\circ}
$$

the mean temperature during observations being $61^{\circ} \cdot 99$.
A comparison of these two sets of values will at once show that it is probable no change, took place in the length of the Standard Bar A between the time it left Dehra and the date of its return from Sévres.

In the reduction of the observations, the absolute expansions used were those adopted in 1870, viz.,

$$
\begin{array}{rlc}
\text { Expansion of } \mathrm{A} & =21 \cdot 797 m . y & \text { for } 1^{\circ} \mathrm{F} . \\
\mathrm{I}_{s} & =21 \cdot 225, & " \\
B & =32 \cdot 759, & ,
\end{array}
$$

The comparisons were carried out in the Bar Room at Dehra. This room has three outer walls, along one of which runs a verandah. It is doulile rooted, the inner flat roof being of concrete, the outer sloping one. of corrugated iron. To protect the building from the sun's direct rays, two outrr walls and the roof were first covered with thick thatching and then outside this, leaving an air space of some 4 feet, were erected thick thatch walls, enclosing the whole building. Provision was also made to prevent the ingress of air from the outside when the observers and recorder entered the room. I'wo small glazed openings were left in the thatch walls to admit sufficient light to illuminate the defining marks of the bars when these were brought under the microscopes.

Within the room, the comparing microscopes, G and $I I$, were placed on isolated brick pillars, east and west of one anothrr. Between the pillars a travelling platform 8 feet 3 inches long and 4 feet 3 inches wide, was mounted on rails and capable of movement from north to south. On this platform were supported the bars and the bar boxes, the former on camels, the latter on wooden blocks as their weight and design made it impracticable to place them on the camels.

On account of the dimensions of bar A differing slightly from those of bars I_{R} and I_{S}, the box for the furmer was not exactly the same size as the box for the latter. The box consisted of two parts, an inner U shaped, double wal'ed tank of
galvanized iron fitting in an outer wooden case, the space between the two being packed with coarse felt and wool. The hollow U tank had been intended for the expansion experiments which were afterwards abandoned. In this investigation it had been proposed to bring the bar under consideration to any required temperature by means of hot or cold water admitted into this tank. Through the bottom of the tank were openings to admit the blocks carrying the rollers on which the bar rested. The intersicers between these blocks and the tank were filled loosely with felt. Each box was provided with four thermometers one at wach end dipping into the interior of the tank, to indicate the temperature of the "ater, and two more in the central channel in which the bar was disposed. These thermometers, passing through holes in the top of the tank and kept in position by felt wads, had to be withdrawn to be read.

Each bar in addition was provided with two bent bulb thermometers, the bulbs of which were placed in wells in the bar, filled with mercury or oil according to the nature of the bar. These thermometers were viewed throunh glazed openings covered by a felt flap remorable at will, in the top of the tank and box.

The bar and its enclosing lox each had its own supports. The box was supported on the travelling platform by four pairs of wooden blocks, cut to a suitable height to allow the bar, when adjusted with its defining marks in focus under the microscopes, to lie centrally in the inner channel of the tank.

The bar itself was carried by its rollers at the usual points of support. These rollers were mounted on wooden blocks, which passing through the openings in the tank and wooden case, were fixed to the longitudinal beam, which, in turn, rested on two camels. The openings in the box were of such a size as to allow of a small amomit of traversing of the blocks carrying the rollers. This traversing was effected ly means of the adjusting screws of the camels which acted directly on the longitudinal beam.

The two bars under comparison were arranged in their respective boxes, side by side on the traveller, by moving which each bar could be brought in turn under the microscopes. The defining marks at the ends of the bars were brought into focus in the usual way by means of the camel screws. It may be remarked here that an aljustment once made was maintained by the bars for a considerable time, and it was found that the movement of the traveller did not cause any disturbance of the focal adjustment.

In the top of the iron tank was an opening over each defining mark of the bar, to allow of the latter being viewed in the microsenpe. These openings could be covered when observations were not in progress by felt and a flap, hinged to the cover of the wooden case.

The thermometers used in the comparisons were:-

Bar A.

In the bar,	east end		β
"	west ,		a
In the central channel,	east ",	Hicks,	379900
"	west ,	"	361379
In the tank,	east ,	"	no number
"	west ,	"	"
Bars	I_{B} and I_{S}		
In the bar,	east end	Casella,	7349
"	west "	"	7344
In the central channel,	east	Hicks,	719477
"	west ,	Casella,	11923
In the tank,	east, ,"	Hicks,	No. 8
"	west ,"	"	no number

Between 14th and 22nd Novemher, 1907, these thermometers and others were compared with the Standards Nos. 105368 and 105369 at temperatures ranging from 33° to $100^{\circ} \mathrm{F}$. During the comparisons all the thermometers were wholly immersed in water in a glass tank. The water was brought to the required temperature hy the introduction of either ice or hot water and thoroughly agitated to dispel irregularities of temperature. The readings were made by means of a telescope.

The corrections to thermometers 7344, 7349, 719477, 11923, 379900, 361379, No. 8, a and β as tabulated in l'able I were deduced from the observations, and are based on the assumption that the mean corrected reading of the two standards indicated the true temperature.

T'ABLE I.-Corrections to Thermometers.

Indicated 'I'emperature	Whermometer number								
	7344	7349	719477	11923	3799⿺0	361379	No. 8	a	θ
33	-	-	-	-	-	-	${ }^{\circ}$	0 +0.30	...
33 34	--1. 10	- $\quad 1 \cdot 05$	\ldots	\ldots	\cdots	\ldots	\cdots	+0.30	- $\quad 1.00$
35	,"	-1*5	\ldots		...	,,	-- "
36		"	\cdots	\cdots	\cdots	\cdots	\cdots	"	"
37	-1'15	"	...	\ldots	\ldots	\cdots	\cdots	\cdots	"
38	"	,"	-0.75	-0. 55	-0.70	-0.20	-0.35	+0.25	"
39	"	"	"	"	"	"	\cdots	+0.20	-
40	,	,	.,	..	:	,	-0.30	+0.20	\ldots
41	"	"	"	'	"	\cdots	-0.25	\because	'
42	"	,	,	\cdots	"	"	\therefore	+0.15	_ $\because 00$
43	"	"	"	-0.60	-0"65	"	-0.20	+0.10	-1.00 -1.05
44	$"$	"	"	"	-065	"	"	+0.10	-1.05
45	-1.10	,	,	"	.	"	\cdots	\cdots	"
46		"	"		"	"	"	+0.05	\because
47	-1.15	- "	"	-0.65	"	"	"	"	-1.05 -1.10
48	"	"	"	''	"	"	"		-1'10
49 50	"	- $\because 10$	"	-0.70	"	"	"	0×0	"
53	"	,	\cdots	-0.75		"	",		"
53	,	"	"	י'	"	"	"	-0.10	"
54	"	-105	"	"	-0.75	-0. 25	"	"	"
55	"	"	,	-0.80	-0.80	-	:	\because	.
50	"	"	"	"		"	"	-0.15	\because
57	"	"	"		-0.85	,	"	"	-1.10
58	"	"	"	-0.85	\because	"	",	-0.20	-1.05
59	- $\because 10$	"	"	',	-0.90	"	"	"	-
60	- I'10	.,	,	.,	.,	,		\because	\cdots
61	"	"'00	-0.80		-0.95	"	'	"	"
122	"	-1.00		"	"	"	,	"	\because
03	"	"	\because	-0.90	- : -00	,	"	"	-1.05
6.4	"	"	-0.85	",	"	,	"	"	-0.95
65	\because	"'	"	.,	\because	-0.25	,
${ }^{66}$	"	,	"	"	"	"	"	"	"
67	"	\because	"	"	-1.05	"	"	"	"
68	"	-1.05	",	"	"	"	"	"	"
69		"	"	"	"	"	,	"	"
70	-105	\cdots		\cdots	.,	\because	"	-	-
71		"	"	"	-1.00	\because	-0.10	-0.30	"
72	"	"	"	"	"	-0. 20	"	"	\because
74	- $\because 10$	"	"	",	-0.95	"	"	"	-0.95 -1.00
75	-1'0	",	"	"	-0.95	"	$"$	$-0{ }_{3}{ }_{3}$	-1.00
56	"	"	"	"	"	"	-0.05	"	-1.10
77	-	\cdots	"	",	"	"	-	"	"
78	-1.15	"	"	"	,	"	"	\because	,
79	"	"	,	"	"	"	"	-0.30	-1.15
	"	"	"	,	\cdots	\cdots	,	\because	"
81	"	"	"	"	"	"	0.00	"	"
82 83	"	"	"	"	,	\cdot	"	"	-1.15
	"	"	"	"	"	"	"	\because	- I'to
84 85	"	"	"	"	"	"	"	-0.35	\cdots
86	"	"	"	*	-,	"	\because	-0.40	-1.05
87	"	"	"	\cdots	"	"	"	-0.45	"
88	"	"	"	-0.05	"	"	"	"	"
89	"	"	"	"	"	"	"	"	"
90	",	"	",	"	",		$"$	"	"
91									-1.10
92	"	"	"	"	"	"	"	"	"
93	\cdots	-1.10	"	"	"	-0.30	"	"	-1'15
94	-1.20	"	-0.90	"	- 1 -00	"	"	"	"
95	,	-1.15	-	"	"	.	.	-0.50	-
9	"		"	"	"		"	"	"
98	"	-1.20	"	\because	\because	-0.35	"	"	"
99	"	- \because	"	-0'90	-105	"'	"	-0.55 -0.60	"
100	"	"	-0.95	"	"	"	"	"	"

The values of the micrometer screws of G and H microscopes were determined between the 21 st and 29 th November, 1907, by measuring, in terms of these screws, the spaces between the dots $3 \cdot 0$ and $3 \cdot 5 ; 3 \cdot 5$ and $4 \cdot 0 ; 7 \cdot 5$ and $8 \cdot 0 ; 9 \cdot 0$ and $9 \cdot 5$ of the inch " $a b$ " of the steel Foot IF, the value of all these spaces being accurately known. To indicate the temperature of IF, thermometer No. 4246 was fitted to the bar, its bent bulb projecting into a well, filled with mercury.

The bar itself was supported by a short iron girder resting on two camels, by means of the sciews of which girder and bar could be moved in any desired direction.

Six sets of observations were made with each microscope, the observers being Major G. P. Lenox Conyngham, R.E., Captain H. M. Cowie, R.E. and Mr. J. de Graaff Hunter, M.A.

The values of the sub-divisions of the inch "a b," determined in 1870-71 are recorded in Appendix No. 9 of Vol. I of the Account of the Operations of the Great I'rigonometrical Survey of India. 'Ihese values were adopted for the purposes of the present investigation. For the spaces observed they are

| Space | $3 \cdot 0$ to $3 \cdot 5=138 \cdot \cdot 573$ |
| ---: | :--- | ---: | :--- |
| $"$, | $3 \cdot 5$ to $4 \cdot 0=1388 \cdot 853$ |
| $"$, | $7 \cdot 5$ to $8 \cdot 0=1388 \cdot 913$ |
| $"$, | $9 \cdot 0$ to $9 \cdot 5=1391 \cdot 323$. |

The coefficient of expansion of IF was taken to be 0.000006367 , the same as that of the steel bar I_{S} (vide p. (19), Vol. I).

The observations and the results obtained are summarized in Tables II and III.

TABLE II.-Determination of Micrometer Value of G Microscope.

Final value of 1 division of $G=1 \cdot 15241 \mathrm{~m} . y$.

TABLE III.-Determination of Micrometer Value of \boldsymbol{H} Microscope.

Final value of 1 division of $H=1 \cdot 10570 \mathrm{~m} . y$.
Hence, 1 division of $H=0.95947$ division of G.

The errors of the thermometers and the micrometer values of the two microscopes having been determined, the comparisons of the bars were commenced.

The procedure of the observations was as follows:-On the traveller were disposed the two bars, A and either I_{S} or I_{B}, carefully adjusted in position and levelled. One bar was then brought under the microscopes, which were then adjusted correctly over the defining marks, levelled and set so that the images of the marks were in sharp focus. The mounting of these microscopes is very stable and throughout the operations there arose no reason to suspect any change of setting or position. The two microscopes, thus adjusted, constituted the comparator and from this point onwards, the lengths of the bars were referred to the distance between the zeros of the microscopes, which quantity was necessarily assumed to remain constant. This assumption is justifiable, as the interval of time between the measurement of one bar and the measurement of the other to be compared with it is very small. At each microscope was an observer, who also took readings of one of the two thermometers giving the temperature inside the tank, one of the two thermometers in the central channel and one of the two bar thermometers. The eastern observer, in addition, read the thermometer giving the temperature in the room.

To illuminate the scales of the thermometers and the drums of the micro meter, small electric glow lamps were used.

The following is the programme of the observations of one set; bar I_{S}, let us say, being under comparison.

Bar A was brought under the microscopes and examination was made of the quality of the focal setting of the defining marks. The same was then done for I_{S}.

The focal setting and positions of the bars having been examined and corrected if necessary, the eastern observer read the thermometer giving the room temperature. Then followed in order

(6) The readings of the bar thermometers,

'Ihis constituted one set of observations. The observers then changed places and a similar set was taken.

Each day two sets were observed while the temperature of the outer air was rising and two while it was falling. At each observation with the microscope at least three intersections of the defining mark were made. The intersections of the east and west marks were made simultaneously and no readings were taken unless both observers were satisfied that their respective intersections were good. In all observations whether with the microscopes or the thermometers, the eastern observer made his reading first.

During sets Nos. 1-10, 22-32, the heads of the micrometers were turned towards one another and in the remaining sets, away from one another. In the former case, increasing micrometer readings corresponded with an increasing length of the bar. Thus if D represents the distance between the zeros of the microscopes, L the length of the bar and M the sum of the micrometer readings,

$$
\mathrm{L}=\mathrm{D}+\mathbf{M} .
$$

In the latter case, where the micrometer heads were turned away from each other, increasing readings corresponded with a decreasing length of the bar. Hence, $\quad L=D-M$.

On the 31 st December, to maintain the temperature at the required point, two small stoves were placed in the room and kept at a low heat. On the 4th January two more stoves were introduced.

Table IV is an abstract of the observations and shows the resulting values of $I_{s}-A$: and Table V gives the same information with respect to the bar I_{B}. The values of $I_{s}-A$ and $I_{B}-A$ together with the mean temperature of the bars compared are summarized in Table VI.

In all cases G microscope was at the east end and I microscope at the west end.
TA BLE IV.-Abstract of Comparisons between \mathbf{A} and $\left.\right|_{\text {s with }}$ deduced results.
(Micrometer heads turrued toundrds each other).

No. of set	1)ate		Pusition of obsersers		Bar	Corrected Wean temperatures			Mean observed ralues of $I_{S}-D$ and $A-D$		$\begin{gathered} \text { Rednction to } \\ 62^{\circ} \mathrm{F} . \end{gathered}$	$\begin{gathered} I_{S}-A \\ \text { at } \\ 62^{\circ} \mathrm{F} . \end{gathered}$
			East end	West end		Room	Air space	Bar	in terms of G	in m. ${ }^{\text {l }}$		
1	Dec.	16	H. M. C.	J de G. H.	${ }_{\text {I }}^{\text {A }}$	59.65	\circ 58 $58 \cdot 50$ 58	58.26 58 58.28	$\begin{aligned} & \text { diuns. } \\ & 16+2 \cdot 38 \\ & 1: 69 \cdot 20 \end{aligned}$	1892.50 1808.36	$\begin{array}{r} m . y \\ +\quad 79.38 \\ +\quad 81.08 \end{array}$	$m \cdot y$ $8: 6+$
2	"	16	J. de G. H.	H. د. C.	${ }^{\text {I }}$	5980	889.3 59.3 .3	$\mathbf{5 8} 39$ 58.48	1643.29 1571.07	1893.34 1810.52	$\begin{aligned} & +76 \cdot 6 z \\ & +76 \cdot 73 \end{aligned}$	8.3•11
3	"	17	J. de G. H	H. M. C.	${ }_{\mathbf{\prime}}^{\mathbf{A}}$	58.78	$\mathbf{5 8 \cdot 2 5}$ $\mathbf{5 8 \cdot 2 3}$	$\begin{aligned} & 58 \cdot 3.3 \\ & 58 \cdot 05 \end{aligned}$	$\begin{aligned} & 1638 \cdot 35 \\ & 1559 \cdot 04 \end{aligned}$	$\begin{aligned} & 1888 \cdot 05 \\ & 1796 \cdot 65 \end{aligned}$	+7790 +86.10	8,3:30
4	"	17	H. M. C.	J. de G. H.	${ }_{\text {I }}^{\text {A }}$	59.05	$58 \cdot 35$ $58 \cdot 38$	$58 \cdot 34$ 57.98	16.3909 1561.25	$1888 \cdot 90$ 1799.20	+ 7.68 $+\quad 87.62$	79:76
5	"	17	H. M. C.	J. de G. H.	${ }^{1}{ }_{S}$	59:18	$58 \cdot 63$ $58 \cdot 7.3$	$58 \cdot 43$ $58 \cdot 28$	$\begin{array}{r} 16+1 \cdot 23 \\ 156.3 \cdot 77 \end{array}$	$\begin{aligned} & 1891.37 \\ & 1802.10 \end{aligned}$	+75.77 +81.08	83.96
6	"	17	J. de G. H.	H. 31. C	${ }^{\prime}{ }_{S}$	59-55	58.90 58.7 .3	$\mathbf{5 8} \cdot \mathbf{4 8}$ 58.36	$\begin{array}{r} 16+5.40 \\ 1.56+67 \end{array}$	$\begin{aligned} & 1896 \cdot 18 \\ & 1803 \cdot 14 \end{aligned}$	+7471 $+\quad 7934$	$88 \cdot 1$
7	"	18	J. de G. H.	H. M. C.	\mathbf{I}_{s}	5863	58.09 5790	$\begin{array}{r} 58.09 \\ 578+ \end{array}$	$\begin{aligned} & 16.32 \cdot 21 \\ & 1550 \cdot 8 ; \end{aligned}$	$\begin{aligned} & 1880 \cdot 98 \\ & 1 ; 8 ; \cdot 24 \end{aligned}$	$\begin{array}{r} 82.99 \\ +\quad 90.68 \end{array}$	$86 \cdot 05$
8	"	18	H. 3. C.	J. de G. H.	${ }_{\text {I }}^{\text {A }}$	5^{875}	$58 \cdot 23$ $58 \cdot 10$	8.05 $5: 75$	$\begin{aligned} & 16.3 .35 \\ & 15.34 \cdot 13 \end{aligned}$	$\begin{aligned} & 1882 \cdot 52 \\ & 1790 \cdot 99 \end{aligned}$	$\begin{array}{r} +83 \cdot 8_{4} \\ +\quad 92.64 \end{array}$	82.73
9	"	18	H. M. C.	J. de G. H.	${ }^{1} \mathbf{S}$	59:35	$58 \cdot 35$ $58 \cdot 3.3$	$\begin{aligned} & 58 \cdot 12 \\ & 57 \cdot 90 \end{aligned}$	$\begin{aligned} & 16.54 .90 \\ & 15.8 .66 \end{aligned}$	$\begin{aligned} & 188_{+} \cdot 08 \\ & 1796 \cdot 22 \end{aligned}$	$\begin{aligned} & +82 \cdot 35 \\ & +89.37 \end{aligned}$	$80 \cdot 8$
10	"	18	J. de G. H.	H. M. C.	I \mathbf{A}	59.45	$58 \cdot 29$ 58.50	$58 \cdot 19$ 58.03	$16.3^{8} \cdot 9_{9}$ 1562.02	$\begin{aligned} & 1888 \cdot 67 \\ & 1800 \cdot 08 \end{aligned}$	$\begin{aligned} & +80.87 \\ & +86 \cdot 10 \end{aligned}$	8.3 .36
22	"	24	G. P. L. C.	H. M. C.	${ }_{\text {I }}^{\text {A }}$	3770	57 $56 \cdot 70$	$\begin{aligned} & 56 \cdot 78 \\ & 56 \cdot \frac{81}{51} \end{aligned}$	$\begin{array}{r} 1602.90 \\ 1528.43 \end{array}$	$\begin{aligned} & 1847 \cdot=0 \\ & 1761 \cdot 38 \end{aligned}$	$\begin{aligned} & +110.79 \\ & +119.67 \end{aligned}$	76.94
23	"	24	G. P. L. C.	H. M. C.	${ }_{\mathbf{A}}^{\mathbf{I}_{S}}$	5790	$\begin{gathered} 57 \cdot 18 \\ 57 \cdot 05 \end{gathered}$	$\begin{aligned} & 56 \cdot 86 \\ & 56 \cdot 99 \end{aligned}$	$\begin{aligned} & 1607 \cdot 02 \\ & 153.3 \cdot 64 \end{aligned}$	$\begin{aligned} & 18,5 \cdot 95 \\ & 1,67 \cdot 38 \end{aligned}$	$\begin{aligned} & +109.10 \\ & +113.56 \end{aligned}$	$80 \cdot 11$
24	"	24	H. M. C .	G. P. L. C.	${ }_{\text {I }}^{\text {A }}$	58.30	$5 \cdots 20$ $5 \cdots 15$	$\begin{aligned} & 56 \cdot 88 \\ & 56 \cdot 83 \end{aligned}$	$\begin{aligned} & 1611 \cdot 29 \\ & 1533 \cdot 22 \end{aligned}$	$\begin{aligned} & 18,66 \cdot 87 \\ & 1,66 \cdot 00 \end{aligned}$	$\begin{aligned} & +108.67 \\ & +112.69 \end{aligned}$	85.95

TABLE TV.-Abstract of Comparisons between A and I_{s} with deduced results.-(Contd.)

TABLEIV.—Abstract of Comparisons between \mathbf{A} and \mathbf{I}_{S} with deduced results-(Contd.) (Micrometer heads turned away from one another).

TABLEIV.-Abstract of Comparisons between A and I_{S} with deduced results.-(Contd.)

Set of No.	Datu		Puaition of observers		Bar	Correctod Meantemperatires			Mcall observed rnluen of I) - I ${ }_{S}$ and D - A		$\begin{aligned} & \text { Reduction to } \\ & \qquad 6^{2} \mathrm{~F} \end{aligned}$	$\begin{gathered} s-A \\ \mathrm{nt} \\ 62^{\circ} \mathrm{F} \end{gathered}$
			Eart end	West end		Hoom	Air spuce	Har	in terus of \mathbf{G}	in m. 4		
									diens.		12. 4.	m. 9
69	Jan.	8	J. de G. H	H. М. C.	${ }^{1}$ A	$67 \cdot 35$	$66 \cdot 0$ $65 \cdot 95$	6.82 6.8 6.67	$1909 \cdot 66$ $1982 \cdot 36$	$2300 \cdot 71$ 2884	+81.08 $+\quad 79.99$	82.69
70		8	H. M. C.	J. do G. H.	${ }_{\text {I }}^{\text {A }}$	67.80	$65 \cdot 98$ 65.98	6.86 6.39	190095 1982.73	$2200 \cdot 58$ $228+92$	+81.93 $+\quad 8.25$	80.66

83.23 m .4
$62^{\circ} .63 \mathrm{~F}$.
$T A B L E V .-A b s t r a c t$ of Comparisons between \mathbf{A} and \mathbf{I}_{B} with deduced results.

$\underset{\text { set }}{\text { No. of }}$	Dute		Pusition of observers		Bur	Corrected Mcan temperatures			Mean observed values of $I_{B}-\mathrm{D}$ and $\mathbf{A}-\mathrm{D}$		Reduction to $62^{4} \mathrm{~F}$.	$\begin{gathered} \mathrm{I}_{\mathrm{B}}-\mathrm{A} \\ \text { at } \\ 62^{\circ} \mathrm{F} . \end{gathered}$
			East end	West end		Room	Air space	Bar	in terms of G	in $m \cdot y$		
	1907		H. М. C.	G. P. L. C.	${ }_{\text {d }}^{\text {A }}$	56\% 50	$\begin{aligned} & 5^{\circ} \cdot 0.3 \\ & 55^{\prime} \cdot 8^{8} \end{aligned}$	$\begin{aligned} & 5.99 \\ & 55 \cdot 45 \end{aligned}$	$\begin{aligned} & \text { divns. } \\ & 1626.44 \\ & 1503.25 \end{aligned}$	$\begin{aligned} & 1874.33 \\ & 1732.36 \end{aligned}$	$\begin{array}{r} m . y \\ +198.85 \\ +1+2.77 \end{array}$	$\begin{aligned} & m . y \\ & 198 \cdot 05 \end{aligned}$
25	Dec	26										
26	"	20	G. P. L. C.	H. M. C.	${ }^{\prime}{ }_{B}$	56\% 0	$\begin{aligned} & 56 \cdot 18 \\ & 5 \cdot 3 \end{aligned}$	$\begin{aligned} & 5502 \\ & 55 \cdot 47 \end{aligned}$	$\begin{aligned} & 162+.58 \\ & 1505 \cdot 74 \end{aligned}$	$\begin{array}{r} 1872 \cdot 18 \\ 173.52 \end{array}$	$\begin{aligned} & +199 \cdot 17 \\ & +142 \cdot 33 \end{aligned}$	19380
27	26		G. P. L. C.	H. M. C.	${ }_{\text {A }}^{B}$	5715	$\begin{aligned} & 56 \cdot 23 \\ & 56 \cdot 30 \end{aligned}$	$\begin{aligned} & 55.93 \\ & 55 \cdot 74 \end{aligned}$	$\begin{aligned} & 162580 \\ & 151198 \end{aligned}$	$\begin{aligned} & 187.3 \cdot 59 \\ & 17+2 \cdot 42 \end{aligned}$	$\begin{aligned} & +198.85 \\ & +136.45 \end{aligned}$	193'57
23	"	20	H. 3. C.	G. P. L C.	${ }_{1}^{B}$	57+0	$\begin{aligned} & 56 \cdot 30 \\ & 56 \cdot 20 \end{aligned}$	$\begin{aligned} & 55.95 \\ & 55 \% 8 \end{aligned}$	$\begin{aligned} & 1629 \cdot+2 \\ & 1510.20 \end{aligned}$	$\begin{aligned} & 1877.76 \\ & 1740.37 \end{aligned}$	$\begin{aligned} & +198 \cdot 19 \\ & +135 \cdot 5^{8} \end{aligned}$	200:00
29	27		J. de G. II.	H. M. C.	${ }_{\text {I }}^{\text {A }}$	$5^{6} \cdot{ }^{\circ}$	$\begin{aligned} & 55 \cdot 98 \\ & 55 \cdot 78 \end{aligned}$	$\begin{aligned} & 55 \cdot 8,3 \\ & 55 \cdot 3.3 \end{aligned}$	$\begin{aligned} & 162.3 \cdot 00 \\ & 150 \cdot 80 \end{aligned}$	$\begin{aligned} & 1870 \cdot 36 \\ & 1732.99 \end{aligned}$	$\begin{aligned} & +202 \cdot 12 \\ & +1+1 \cdot 03 \end{aligned}$	$198+46$
30	"	27	H. M. C.	J. de G. H.	${ }_{\text {I }}^{\text {A }}$	56.60	$\begin{aligned} & 56 \cdot 18 \\ & 56 \cdot 18 \end{aligned}$	$\begin{aligned} & 5: 88 \\ & 55.46 \end{aligned}$	$\begin{aligned} & 1623.45 \\ & 1503.37 \end{aligned}$	$\begin{array}{r} 18 ; 0 \cdot 88 \\ 1 ; 327.3 \end{array}$	$\begin{aligned} & +201 .+7 \\ & +142 \cdot 55 \end{aligned}$	$197 \cdot 07$
31		27	J. de G. H.	H. M. C.	${ }^{\text {I }}$ A	56.05	$\begin{gathered} 56 \cdot 15 \\ 56 \cdot 38 \end{gathered}$	$\begin{aligned} & 55.85 \\ & 55 \cdot 79 \end{aligned}$	$\begin{aligned} & 1626 \cdot 29 \\ & 1512.76 \end{aligned}$	$\begin{aligned} & 187+15 \\ & 17+3 \cdot 3^{2} \end{aligned}$	$\begin{aligned} & +201 \cdot 47 \\ & +13540 \end{aligned}$	196.90
32		27	J. de G. H.	H. M. C.	$\begin{gathered} \mathrm{I}_{B} \\ \mathrm{~A} \end{gathered}$	57.25	$\begin{aligned} & 56 \cdot 28 \\ & 56 \cdot 28 \end{aligned}$	$\begin{aligned} & 55.93 \\ & 55.80 \end{aligned}$	$\begin{aligned} & 1628 \cdot 68 \\ & 1512.00 \end{aligned}$	$\begin{array}{r} 1876 \\ 17429 \\ 174 \end{array}$	$\begin{array}{r} +19885 \\ +13514 \end{array}$	198 : 18
	Mean value of $I_{B}-A$ (micrometer heads turned towards e:rch other)								$\begin{aligned} & 197^{\circ} 00 \mathrm{~m} . y \\ & 55^{\circ} \cdot 76 \mathrm{~F} . \end{aligned}$			

TABLEV.-Abstract of Comparisons between A and I_{B} with deduced results-(Contd.).

TABLE V．—Abstract of Comparisons between \mathbf{A} and $\mathrm{I}_{\boldsymbol{B}}$ with deduced results－（Contd．）．

		－	$\stackrel{0}{0}$	－		－	$\stackrel{\square}{\square}$ $\stackrel{\rightharpoonup}{\square}$	首	n ir $\underline{-r}$	\therefore \vdots \square	－	＋	¢	Oi
							＋		∞ 0 0 0 0 + + +	$-\infty$ 0 0 + +	枵言			
			$\begin{aligned} & \text { GJ } \\ & \text { in } \\ & \text { in } \end{aligned}$					$\begin{aligned} & 0: \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$				＋		－
					$\begin{aligned} & 900^{2} \\ & \therefore=0 \\ & \therefore=0 \end{aligned}$						令家		－	
号				$\begin{aligned} & 8 \% \\ & 28 \\ & 0.6 \end{aligned}$		$\begin{aligned} & \overline{1}= \\ & \vdots \\ & \vdots \end{aligned}$	$\begin{aligned} & \therefore 8 \\ & \vdots \\ & \vdots \\ & \hline 0 \end{aligned}$	$\begin{aligned} & \overline{2}= \\ & \infty \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \% \\ & 0 \% 80 \\ & 0 \end{aligned}$		$\begin{aligned} & 4 . \\ & \mathbf{o}^{9} \end{aligned}$	$$		
		$\begin{aligned} & =\sim \\ & m \\ & m \\ & m \end{aligned}$	Nox		$\begin{gathered} 0 \\ 0 \\ +0 \\ +0 \end{gathered}$		$\begin{aligned} & \text { min } \\ & \text { な。 } \end{aligned}$	禺品号	$\begin{aligned} & \infty \quad \infty \\ & \underset{\sim}{\infty} \\ & \underset{\sim}{\infty} \end{aligned}$	$\begin{aligned} & \infty \times 8 \\ & \infty \\ & \text { ono } \end{aligned}$	$\begin{aligned} & \approx: 0 \\ & \therefore 0 \\ & 0 . \end{aligned}$			$\begin{aligned} & \because 8 \\ & \\ & 08 \end{aligned}$
$\stackrel{\text { 免 }}{\sim}$		$\stackrel{\bullet}{5}$	$\begin{aligned} & \circ \\ & \stackrel{\circ}{i} \\ & \stackrel{2}{2} \end{aligned}$	$\begin{gathered} \infty \\ \underset{\sim}{\infty} \\ \underset{\sim}{\infty} \end{gathered}$	$\begin{aligned} & \% \\ & \% \\ & i \\ & i \end{aligned}$	$\begin{aligned} & \dot{q} \\ & \dot{9} \end{aligned}$	$\begin{aligned} & \approx \\ & \vdots \\ & \vdots \end{aligned}$	$\begin{aligned} & \AA \\ & \stackrel{\circ}{\circ} \end{aligned}$	$\begin{aligned} & 0 \\ & \vdots \\ & 0 \end{aligned}$	$\stackrel{5}{2}$	$\stackrel{8}{\circ}$	$\begin{aligned} & \circ \\ & \dot{0} \\ & \dot{0} \end{aligned}$	$\begin{aligned} & \therefore \\ & \stackrel{\circ}{0} \end{aligned}$	$\begin{aligned} & \text { in } \\ & 0 \\ & i \end{aligned}$
吕	$\pm<$	\cdots	24	－9＜	$\underline{-9}$	± 8	－4	A4	－	$2 \times$		－${ }^{8}$	$\underline{4}$	\cdots
	$\begin{array}{ll}0 \\ 0 \\ 0 & 0 \\ 0 \\ 0 & \\ 0\end{array}$	0－1		0 － i 由id		－	$\begin{aligned} & \text { u } \\ & 0 \\ & \div \\ & \div \\ & \hline- \end{aligned}$	$\stackrel{\circ}{\text { ¢ }}$	$\begin{aligned} & \dot{H} \\ & 0 \\ & \dot{y} \\ & \dot{y} \\ & \dot{y} \end{aligned}$	0 － à 可	$\begin{aligned} & \dot{0} \\ & \text { H } \\ & \text { i } \\ & \dot{0} \end{aligned}$		－	$\begin{aligned} & 0 \\ & i \\ & i \\ & 0 \\ & 0 \end{aligned}$
～＊					$\begin{aligned} & \text { ن } \\ & \text { - } \\ & \text { io } \end{aligned}$	$\begin{aligned} & \text { ì } \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & \dot{z} \\ & \dot{y} \end{aligned}$	$\begin{aligned} & \dot{0} \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \text { ن } \\ & \text { 官 } \\ & \text { 保 } \end{aligned}$	0 i i 0 0	0 y 可	0 i i 0		
ロّ			＊		∞						os	O		
$\stackrel{\text { \％}}{\substack{\text { ¢ } \\ \text { ¢ } \\ \text { ¢ }}}$	9	5	\％	\％	8	\square	웅	E	N：	R	\＃	10	$\stackrel{\sim}{\sim}$	F．

TABLE V.-Abstract of Comparisons between A and I_{B} with decluced results-(Contd.).

No. ofBet	Dutu		Pusitiun of ubservers		Bur	Corrected Mean temperatures			Mean observed values of $D-I_{B}$ and $D-A$		Reductior to $62^{\circ} \mathrm{F}$.	$\begin{gathered} I_{B}-A \\ \text { nt } \\ 62^{\circ} \mathrm{F} . \end{gathered}$
			Eust end	West end		Roour	dir spuce	Bar	in terus of G	in m.y		
									diuns.		m. 4	m. y
78		10	G. P. L. C.	J. de G. H.	${ }_{\text {I }}^{B}$	$70^{\circ} 90$	69.08 68.95	69.00 68.83	$1740 \cdot 96$ $1980 \cdot 96$	2006.30 2282.88	$\begin{aligned} & +229.31 \\ & +148.87 \end{aligned}$	$196 \cdot 14$
\%:		11	J. de G. FI.	H. M. C.	${ }_{\text {I }}^{\text {A }}$	69.90	68% 67%	$68 \cdot 80$ 67 67 64	1787.95 1975.26	2014.96 2276.31	+186.73 +120.76	${ }^{195}{ }^{\prime}{ }^{8}$
80		11	H. M. S.	J. de G. H.	I A	70,50	$68: 00$ 67.90	6769 $67 \% 3$	$1745 \cdot 88$ 1972.79	2011.97 2273.46	+186.40 +120.54	'95'63

$196.65 \mathrm{~m} . \mathrm{y}$
$62^{\circ} .88 \mathrm{l}$.

TABLE VI.—Values of $\mathrm{I}_{S}-\mathrm{A}$ and $\mathrm{I}_{B}-\mathrm{A}$ reduced to 62° F. as determined at Dehra, Nov. 1907—Jan. 1908.

No, of set	Mean temperature of Burs I_{S} and A	$\begin{gathered} \text { Value } \\ \text { of } \\ \mathbf{I}_{S}-\mathrm{A} \end{gathered}$	No. of set	Meantemperature $\text { Burs } \mathbf{I}_{B}^{\text {of }} \text { and A }$	Value of $I_{B}-\mathrm{A}$
	- ㅇ. 27	m. ${ }^{2}$		5×69	$m .9$ $198 \cdot 0.08$
1	54.27	$8: 64$	26	5.69	1980
2	$58 \cdot 44$	8.3 .11	26	55\% 70	19.380
3	58.19	83.20	27	$55 \cdot 83$	19.3 .57
4	58-16	79\%	28	$55 \cdot 87$	200.00
5	$58 \cdot 35$	83.96	29	55.68	$19^{8} 46$
6	$58 \cdot 42$	88.41	30	$55 \cdot 65$	197.07
7	$57 \cdot 97$	86.05	31	55.82	$196 \cdot 90$
8	57.90	82'73	32	$55^{8} 8$	$19^{8.18}$
9	$5^{8.01}$	$80 \cdot 84$	33	$55 \cdot 87$	$200 \cdot 40$
10	$5^{8 \cdot 12}$	$83 \cdot 36$	34	$55 \cdot 81$	$202 \cdot 83$
11	$57 \cdot 66$	56.60	35	55.89	201.19
12	$57^{\circ 64}$	88.50	36	$55 \cdot 92$	199.18
13	57×79	80.46	37	$55 \cdot 80$	197 -88
16	5789	85.59	58	$55 \cdot 78$	$200 \cdot 15$
15	57.38	83'75	39	55.87	195.83
16	$57 \cdot 38$	82.85	40	55.88	$202 \cdot 96$
17	57.57	$85 \cdot 21$	41	61.55	$195 \cdot 18$
18	57-57	$84 \cdot 25$	42	61.76	197.19
19	$56 \cdot 84$	- 89,74	43	62.04	193.04
20	$56 \cdot 93$	84.21	44	62.18	$191 \cdot 90$
21	$56 \cdot 63$	87.24	45	62.81	192.40
22	$56 \cdot 64$	76.94	46	62.83	195.94
23	56.83	80.11	47	62.94	19560
24	$56 \cdot 85$	85.95	48	62.97	19.36
53	$6.3 \cdot 93$	83.92	49	6.3 .82	195\%
54	63.96	$78 \cdot 85$	60	63.80	196.22
65	$65 \cdot 00$	$78 \cdot 79$	51	64•16	$195 \cdot 28$
56	$65 \cdot 15$	73.88	62	$64 \cdot 23$	194'29
67	$68 \cdot 52$	79.48	71	68.21	19452
58	68.78	84.86	72	$68 \quad 18$	$195 \cdot 55$

TABLE VI.-Values of $\mathrm{I}_{S}-\mathrm{A}$ and $\mathrm{I}_{B}-\mathrm{A}$ reduced to $62^{\circ} \mathrm{F}$. as determined at Dehra, Nov. 1907 -Jan. 190S-(Contd.).

No. 1 f get	Mean temperntare of Bura \mathbf{I}_{S} and A		No. of set	Mean temperature of Bars I_{B} nal A	$\begin{aligned} & \text { Value } \\ & I_{B}-A \end{aligned}$
59	$6_{8}^{2} \cdot 8,3$	$\begin{gathered} n y \\ 8_{3} y^{8} \end{gathered}$	73	$68 \cdot 10$	$\begin{gathered} m y \\ 194^{\prime} 71 \end{gathered}$
61	68.88	$80 \cdot 42$	74	68.44	197.15
60	65.09	81.63	75	$69 \cdot 12$	194.27
02	65.00	8418	76	$69 \cdot 07$	201-00
13	64.99	84.52	77	$68 \cdot 90$	198'56
64	$6+9^{6}$	81* 7 \%	78	68.92	$196 \cdot 14$
Ga	$6+8_{7}$	$82 \cdot 74$	79	67.62	195.98
66	$6+89$	$85 \cdot 19$	80	67.61	$195 \cdot 6.3$
67	65:2i	82:74			
68	$65 \cdot 3.3$	83.11			
69	65:75	82.69			
70	$65 \cdot 7=$	$80 \cdot 66$			

TABLE TII.—Mean values of $\mathrm{I}_{s}-\mathrm{A}$ and $\mathrm{I}_{B}-\mathrm{A}$ reduced to $62^{\circ} \boldsymbol{F}$. from Dehra observations, Nov. 1907-Jan. 1908.

	$\mathbf{I}_{S}-\mathbf{A}$	$\begin{gathered} I_{B}-A \\ \text { Temperature } \end{gathered}$
Mean value for temperatures below 62° Corresponding mean temperature	83.98 m" $57 \cdot 64 \mathrm{~F}$.	$198 \cdot 22$ m.y $\mathbf{5 6} \cdot \mathbf{4 6} \mathrm{F}$.
Mean value for temperatures above 62 ${ }^{\circ}$ Corresponding mean temperature	$\begin{aligned} & 81 \cdot 97 \mathrm{my} \\ & \mathbf{6 5} \cdot \mathbf{8 4} \mathrm{~J} . \end{aligned}$	$195 \cdot 38$ m.y $6{ }^{\circ} \cdot 81 \mathrm{~F}$.
General mean value General mean temperature	$\begin{gathered} 83 \cdot 12 \pm \mathbf{0} \cdot 33 m \cdot y \\ 6 i \cdot 15 \mathrm{~F} . \end{gathered}$	$\begin{gathered} 196.73 \pm 0.30 \mathrm{~m} . y \\ 61.38 \mathrm{~F} . \end{gathered}$

After these observations had been completed bar A, as stated alove, was sent to Sévres for comparison with the International Metre. It was then returned to India, and a sceond set of comparisons was carried out in November and December, 1908. The same method and procedure in general was followed as had been done in the comparisons already described. No new determinations of the thermometer errors were made, but the same thermometers were used in identical places; nor were the values of the micrometer errors of G and H microscopes redetermined. The old values in both cases were accepted.

Comparisons Nos. 1 to 10 inclusive and Nos. 31 to 40 inclusive dealt with the differences $I_{B}-A$. Of these comparisons Nos. 1 to 10 were made with the micrometer heads turned towards each other and with the end of the bar A marked "Troughton and Simus" towards the west. In the remainder the heads of the micrometers were away from one another and "'roughton and Simms" towards the east. Comparisons Nos. 11 to 30 inclusive gave values of the quantity $I_{\mathcal{S}}-A$. Of these Nos. 11 to 20 were made with the inicrometer heads towards each other and "Troughton and Simms" towards the west. In the remaining comparisons these conditions were reversed. The two observers H. H. 'I. and H. M. C. as in the $\mathbf{1 9} 07$ comparisons changed places, so that each day an even number of comparisons were made, half under one and half under the alternative conditions. At no time during the operations were stoves necessary for maintaining the temperature of the room at the required height.

The same particulars of these observations as have been given for the previous set, and their results are set forth in Tables VIII-XI.
$\boldsymbol{T} \boldsymbol{A} \boldsymbol{B L E}$ VIII.-Abstract of Comparisons between \mathbf{A} and I_{B} with deduced results.

$\begin{aligned} & \text { No. of } \\ & \text { set } \end{aligned}$	Date		Position of observers		Har	Corrected Mean teuperatures			Mean obserced ralues of $\left.\mathbf{I}_{B}-\mathrm{D} \operatorname{and} \mathrm{A}-\mathrm{I}\right)$		$\begin{aligned} & \text { Redueftion to } \\ & \operatorname{tiz}^{\circ} \mathrm{F} \end{aligned}$	$\begin{aligned} & 1_{B}-A \\ & \text { ut } \\ & 6 z^{\circ} \mathrm{F} . \end{aligned}$
			East end	West end		Roon	Air space	Bar	in terms of G	in $71 . y$		
1	Nou.	17	H. M. C .	Н. Н. Т.	${ }_{\text {A }}^{\text {A }}$	$6{ }_{5}^{\circ} 90$	0.70 6.50 6.15	6. $65 \cdot 44$ $65 \cdot 04$	diens $1588 \cdot 87$ $1370 \cdot 3.4$	$\begin{aligned} & 1821 \cdot 81 \\ & 1579 \cdot 19 \end{aligned}$	$m y$ -11269 $-\quad 66.26$	$196 \cdot 19$
2	"	17	H. H. T.	H. M. C.	${ }_{\text {A }}^{\text {A }}$	$66 \cdot 10$	$65 \cdot 38$ 65.90	69.42 64.98	$1580 \cdot 92$ 1.377 .60	$\begin{array}{r} 1821 \cdot 87 \\ 1587 \cdot 56 \end{array}$	-11204 -6496	187.23
3	"	17	H. M. C.	H. II. T.	${ }_{\text {A }}^{\text {A }}$	66. 38	66.13 $65 \cdot 85$	$65 \cdot 90$ 65.46	$1587 \cdot 4$ $1383 \cdot 15$	1829.34 1593.96	-1:4.66 -7542	$196 \cdot 14$
4	"	17	H. H. ¢.	H. M. C	${ }_{\text {A }}^{\text {A }}$	$66 \cdot 68$	$\begin{aligned} & 66 \cdot 10 \\ & 6: 90 \end{aligned}$	$\begin{aligned} & 65 \cdot 48 \\ & 65 \cdot 49 \end{aligned}$	$\begin{aligned} & 1589.90 \\ & 1389.26 \end{aligned}$	1832.22 1601'00	-11400 -7607	193. 29
5	"	18	H. В. 'T.	H. M. C .	${ }_{\text {A }}{ }_{\text {I }}$	65.75	65.68 64.98	65.20 64.86	$1572 \cdot 37$ 137048 157	$\begin{array}{r} 1812.01 \\ 1579.35 \end{array}$	- 104.83 -62.34	$190 \cdot 17$
6	"	18	H. M. c.	H. н. т.	${ }^{1}{ }_{B}$	$65^{\circ}{ }^{\circ}$	$65 \cdot 28$ 65.15	6.15 6.15 6.85	1573.96 1370.23	$\begin{aligned} & 1813.85 \\ & 1579.07 \end{aligned}$	- 10319 -6212	193.71
7	"	18	H. M. C.	H. H. T.	${ }_{\text {' }}^{\text {A }}$	65.85	$\begin{aligned} & 63 \cdot 4^{8} \\ & 65 \cdot 3^{8} \end{aligned}$	$65 \cdot 16$ $65 \cdot 06$	$1576 \cdot 63$ 1379.02	$\begin{aligned} & 1816 \cdot 92 \\ & 1 ; 89.20 \end{aligned}$	-103. ${ }^{2}$ -66.70	190'90
8	"	19	H. M. c.	H. H. T.	${ }_{\text {I }}^{\text {I }}$	65•10	$65 \cdot 03$ $64 \cdot 88$	$6+8.85$ $6+56$ $6+5$	$1560 \cdot 7$ 1359	$\begin{array}{r} 1798 \cdot 58 \\ 1567 \cdot 01 \end{array}$	- 93.36 $-\quad 53.80$	19+01
9	*	19	н. Н. 'г.	II. M. C.	${ }^{\prime}{ }_{B}$	65.20	$65 \cdot 05$ 64.68	$\begin{aligned} & 64 \cdot 81 \\ & 64 \cdot 41 \end{aligned}$	$\begin{aligned} & 1561 \cdot 05 \\ & 1363.05 \end{aligned}$	$\begin{aligned} & 1798.97 \\ & 1570.79 \end{aligned}$	- 92.05 $-\quad 52.3$	188.66
10	"	19	H. H. T .	H. M. C.	${ }_{\text {A }}^{\text {A }}$	$65 \cdot 35$	$\begin{aligned} & 6.4 \cdot 90 \\ & 6+7.3 \end{aligned}$	$\begin{aligned} & 64 \cdot 78 \\ & 64 \cdot 52 \end{aligned}$	$\begin{aligned} & 1560 \cdot 88 \\ & 1362 \cdot 60 \end{aligned}$	$1798 \cdot 77$ $1570 \cdot 27$	- 9107 $-\quad 54$	$192 \cdot 36$

 Mean temperature
TABLE VIII.-Alstract of Comparisons between \mathbf{A} and I_{B} with deduced results-(Contd.).

[^1]TABLE IX.-Abstract of Comparisons between A and I_{S} with deduced resulte. (Wicrometer heads turned towards each other).

No of set	Date		Position of observers		Bar	Corrected Mean temperaturea			Mean observed ralues of $\mathbf{I}_{S}-1$ und \mathbf{A}-D		Reduction to $02^{\circ} \mathrm{F}$.	$\begin{gathered} I_{S-A} \\ \text { it } \\ \epsilon 2^{\circ} F . \end{gathered}$
			East end	Weat end		Room	dir space	Bur	in terms of G	ill m. ${ }^{\text {y }}$		
	1908		H. H. T.	H. M. C .	${ }_{A}^{I_{S}}$	$65^{\circ} \cdot 90$	$65 \cdot 43$$65 \cdot 10$	$\begin{aligned} & 6+98 \\ & 64 \cdot 85 \end{aligned}$	divns.$\begin{aligned} & 1444 \cdot 28 \\ & 1372 \cdot 26 \end{aligned}$	$\begin{aligned} & 166+40 \\ & 1581+1 \end{aligned}$	$\begin{gathered} m . y \\ -\quad 63.25 \\ -\quad 62.12 \end{gathered}$	$\begin{gathered} m \cdot y \\ 8 \cdot \cdot 86 \end{gathered}$
11	Nov.	19										
12	20		H. M. C.	Н. Н. '.	$\mathrm{I}_{\text {S }}$	65:00	$6+\cdot 97$ $6+\cdot 63$	$\begin{aligned} & 6+63 \\ & 6+52 \end{aligned}$	$14.30 \cdot 06$ $1356 \cdot 78$	$1648 \cdot 02$ $1563 \cdot 57$	-5582 $-\quad 34.93$	$8.3 \cdot 6$
13	20		F. H. T.	H. M. C.	${ }_{A}^{I_{S}}$	65^{115}	$65 \cdot 00$ $6+\cdot 53$	$\begin{aligned} & 6+64 \\ & 64.39 \end{aligned}$	$\begin{aligned} & 14.32 \cdot 7.3 \\ & 1361 \cdot 51 \end{aligned}$	$\begin{aligned} & 1651 \cdot 09 \\ & 1569 \cdot 02 \end{aligned}$	$-\quad 5603$ $-\quad 5209$	$7^{8 \cdot 13}$
14	20		H. M. C.	H. H. T.	${ }_{\text {A }}^{\text {S }}$	$65 \cdot 30$	$65 \cdot 05$ 64.68	$\begin{aligned} & 6+66 \\ & 6+51 \end{aligned}$	$\begin{aligned} & 14.32 \cdot 19 \\ & 1360 \cdot 74 \end{aligned}$	$1650 \cdot 47$ $1568 \cdot 13$	-56.46 -54.71	80'59
15	20		H. M. С.	H. H. T.	${ }_{\text {I }}^{\text {A }}$	65.40	$65 \cdot 0.3$ $65 \cdot 0.3$	$6+77$ 64.72	1435.96 1366.69	1654.81 1374.99	- ${ }^{8779}$ $-\quad 5929$	$80 \cdot 32$
16	20		H. H. T.	H. M. C.	${ }_{\text {A }}^{\text {I }}$	$65 \cdot 80$	$\begin{aligned} & 65 \cdot 4,3 \\ & 64 \cdot 98 \end{aligned}$	$\begin{aligned} & 6+77 \\ & 6+78 \end{aligned}$	$\begin{aligned} & 14.37 .30 \\ & 137082 \end{aligned}$	$\begin{aligned} & 1656 \cdot 36 \\ & 1579: 75 \end{aligned}$	-58.79 -60.60	78.42
17	23		H. M. C.	H. F. T.	${ }_{\text {A }}^{\text {A }}$	$64 \cdot 70$	$64 \cdot 73$ $64 \cdot 13$	$6+40$ $6+20$	$1+27 \cdot 18$ 1353.37	$16+4 \cdot 70$ 1559	-50.94 $-\quad 47.95$	82.07
18	23		H. H. T.	H. M. C.	${ }_{\text {I }}^{\text {A }}$	$6+90$	$\begin{aligned} & 6+\cdot 58 \\ & 6+30 \end{aligned}$	$\begin{aligned} & 6438 \\ & 6+18 \end{aligned}$	$1428 \cdot 79$ 1357.54	$\begin{aligned} & 1646 \cdot 55 \\ & 156_{4} \cdot 44 \end{aligned}$	$-\quad 50.52$ $-\quad 4752$	79'11
19	23		H. M. C.	H. H. T.	${ }_{\text {A }}$	65.10	$6+63$ $6+65$	$6+45$ $6+49$	14.31 .05 1358.88	$\begin{aligned} & 16_{49} \cdot 16 \\ & 1565 \cdot 99 \end{aligned}$	-52.00 -54.27	85.44
20	23		H. H. T.	H. M. C.	${ }_{\text {A }}^{\text {A }}$	$65 \cdot 45$	$6+73$ $64 \cdot 75$	$6+48$ $6+42$	$1+3+72$ 1366.33	$\begin{aligned} & 1653 \cdot 16 \\ & 1574 \cdot 57 \end{aligned}$	-52.64 $-\quad 52.75$	78:70
	Mean value of $I_{S}-A$ (micrometer heads turned towards each other) $80 \cdot 82 \mathrm{~m} . \mathrm{I}^{2}$ Mean temperature \ldots \ldots \ldots \ldots $64^{\circ} \cdot 56 \mathrm{~F}$.											

TABLE $1 \boldsymbol{X}$.-Abstract of comparisons between \mathbf{A} and $\mathbf{1}_{S}$ vith deduced results-(Cointd.).
(Micrometer heads turned away from one another)

No. ofset	Date		Position of obsersers		Bar	Corrected Mean temperature			Mean obserred ralues of $\mathrm{D}-\mathrm{I}_{\mathrm{S}}$ and $\mathrm{D}-\mathrm{A}$		Reduction to $62^{\circ} \mathrm{F}$.	$\begin{gathered} I_{S}-A \\ \text { at } \\ 62^{\circ} \mathrm{F} . \end{gathered}$
			East end	West End		Room	Air space	Bar	in terms of G	in m.y		
	1908											
21	Nor.	24	H. H. T.	\#. М. С.	I_{s}	$6{ }_{4}{ }^{\circ} 65$	${ }_{63}{ }^{\circ} 68$	${ }^{6} 3 \cdot 39$	divns. $617 \% 2$	71187	m. $+\quad 29$ $+\quad 29$	
					A		63.53	$63 \cdot 24$		$793 \cdot 39$	+ 27.03	i9.05
22	"	24	H. M. C.	H. H. т.	${ }_{\text {A }}^{\text {A }}$	64\%75	63.85 63.63	6.34 63.30	617% 689 69	711.90 794.30	$+\quad 3035$ $+\quad 2834$	80'39
23	"	24	H. M. C.	H. H. T.	${ }_{\text {A }}^{\text {S }}$	64:70	63.90 63.43	63.78 63.68	610.94 681.29	78.405 785	+36.08 $+\quad 36.62$	$81 \cdot 62$
24	"	24	H. H. T.	H. M. С.	${ }_{\text {A }}^{\text {A }}$	$65 \cdot 05$	$\begin{aligned} & 6+\circ 03 \\ & 6+\cdot 08 \end{aligned}$	6.75 63.70	608.09 674.99	$700 \% 7$ 77787	a $+\quad 3714$ $+\quad 3705$	7701
25	"	25	H. M. C.	н. Н. T.	${ }_{\text {I }}^{\text {A }}$	63.95	$6.3 \cdot 0+$ 6.38 6.3	62.94 62.87	$631 \cdot 83$ 704% 0.7	$728 \cdot 13$ $812 \cdot 10$	$\begin{array}{r} \\ +\quad 1995 \\ -18.95 \\ \hline\end{array}$	82.98
26	"	25	I. H. T.	H. M. C.	${ }_{\text {A }}^{\text {A }}$	$6+\cdot 25$	$\begin{aligned} & 63 \cdot 08 \\ & 63 \cdot 4.3 \end{aligned}$	63.01 62.93	629.21 $700 \cdot 11$	$725 \cdot 11$ 806.81	+21.4 $+\quad 20.27$	80'53
27	"	25	H. H. T.	H. M. C.	${ }_{\text {I }}^{\text {A }}$	64.45	$\begin{aligned} & 6_{3} \cdot 28 \\ & 63 \cdot 8.8 \end{aligned}$	$63 \cdot 32$ 63.43	$619 \cdot 64$ $689 \cdot 0.3$	$7+08$ $79+05$	$+\quad 28.02$ +3117	$83 \cdot 12$
28	"	25	H. M. C.	H. H. T.	I_{s}	$6{ }^{6} \cdot 75$	$\begin{aligned} & 63 \cdot 48 \\ & 64 \cdot 18 \end{aligned}$	$63 \cdot 41$ 63.50	$616 \cdot 79$ $688 \cdot 52$	$710 \cdot 79$ 793	a $+\quad 29.93$ $+\quad 3270$	$85 \cdot+4$
29	"	26	H. M. C.	H. H. T.	I_{s}	63.05	$61 \cdot 25$ $62 \cdot 08$	$61 \cdot 05$ 61.21	674.94 $74+96$	777.80 8788.50	[$20 \cdot 16$ $-\quad 1.22$	$83^{\prime} 6_{+}$
30		26	H. H. T.	H. M. c.	${ }_{\text {A }}^{\text {A }}$	63.30	$\begin{aligned} & { }^{61 \cdot 38} \\ & 62 \cdot 13 \end{aligned}$	$61 \cdot 11$ $61 \cdot 32$	$671 \cdot 59$ 738.04	773.95 850	- 18.89 -14.89	80.64

[^2]> TABLE X.-Values of $\mathrm{I}_{R}-\mathrm{A}$ and $\mathrm{I}_{S}-\mathrm{A}$ reduced to 62° F. as determined at Dehra, Nov.-Dec., 1908.

No. of ect	Menn temperature ol Bars I_{B} and A	$\begin{gathered} \text { Value } \\ \text { of } \\ \mathbf{t}_{B}-A \end{gathered}$	No. of set	Menn temprature of Bars IS and A	$\begin{aligned} & \text { Value } \\ & \mathbf{I}_{S}-\mathrm{A} \end{aligned}$
1	$65 \cdot 3+$	$\begin{gathered} m y \\ 196 \cdot 19 \end{gathered}$	11	$6_{+}^{\circ} \cdot 92$	$m . y$ 8.86
2	$65 \cdot 20$	$187 \cdot 23$	12	$6+38$	$83 \cdot 56$
3	65.48	$196 \cdot 14$	13	64.52	-8.13
4	$65 \cdot 49$	19.3 29	14	64.59	80. 59
5	$65 \cdot 0.3$	190.17	15	$64 \cdot 75$	$80 \cdot 32$
6	$65 \cdot 00$	193「1	16	$6+78$	$78 \cdot 4^{2}$
7	6-	$100 \cdot 90$	17	64.30	$82 \cdot 07$
8	64.71	194.01	18	$6+28$	7911
9	$6{ }^{4} 61$	188-66	19	64.47	85.44
10	$64 \cdot 65$	192:36	20	64.45	78.70
31	59\%71	19713	21	63.32	$79 \cdot 05$
32	39-78	19, 31	22	63.37	80.39
33	60.32	191:00	23	63.69	81.62
34	$60 \cdot 42$	198.76	24	$63 \cdot 73$	77.01
35	57.28	19773	25	62.01	$82 \cdot 98$
36	57.42	192.67	26	62.97	$80 \cdot 53$
37	$5^{8 \cdot 00}$	$106 \cdot 10$	27	$6.3 \cdot 3^{8}$	$83 \cdot 12$
38	58*3	$170 \cdot 40$	28	6.3 .46	$85 \cdot 44$
39	59*14	$19^{8.37}$	29	61.13	$83 \cdot 64$
40	59'17	189.52	30	61.22	80.64

TABLE XI.—Mean values of $\mathrm{I}_{B}-\mathrm{A}$ and $\mathrm{I}_{S}-\mathrm{A}$ reduced to $62^{\circ} F$. from Dehra observations, Noo.-Dec. 1908, as found by the second series of observations.

	$\begin{aligned} & I_{B}-A \\ & \text { ind } \\ & \text { Jempernture } \end{aligned}$	$\begin{aligned} & I_{y}-A \\ & \text { Temper } \\ & \text { nemature } \end{aligned}$
Mean value for temperatures below 62 Corresponding mean temperature	$\begin{aligned} & 194 \cdot 50 m \cdot y \\ & 58^{\circ} \cdot 94 \mathrm{~F} \end{aligned}$	$\begin{aligned} & 82 \cdot 14 \mathrm{~m} .9 \\ & 61 \cdot 18 \mathrm{~F} . \end{aligned}$
Mean value for temperatures above 62° Corresponding mean temperature	$\begin{aligned} & 192 \cdot 27 m . y \\ & 65^{\circ} 05 \mathrm{~F} \end{aligned}$	$\begin{aligned} & 81 \cdot 02 m y \\ & 64^{\circ} \cdot 03 \mathrm{r} . \end{aligned}$
General mean value General mean temperature ...	$\begin{aligned} & 193 \cdot 38 \mathrm{~m} y \\ & 61.99 \mathrm{r} \end{aligned}$	$\begin{aligned} & 81 \cdot 13 \mathrm{~m} \cdot y \\ & 63^{\circ} 74 \mathrm{~F} . \end{aligned}$

APPENDIX No. 1
The following letter was received from the Director of the Bureau International des Poids et Mesures, Breteuil Sévres, July, 1908:-

A detailed report of the operations will be sent in a short time. The olservations were made at temperature between 17° and 18° (Centigrade). Bar A at $17^{\circ} \mathrm{O}$ is 3048.026 mm . The value reduced to $62^{\circ} \mathrm{F}$. becomes
$3047 \cdot 996 \mathrm{~mm}$.
The value given in. Vol. I of the Indian Survey is

$$
3 \cdot 333,318,86 y d s .
$$

which using the equivalent determined at the Burean International gives

$$
3047 \cdot 984 \mathrm{~nm} .
$$

The difference is extremely small, taking into consideration the distant date of the determination of the length of the bar, the difficulty of intersecting the unsatisfactorily defined dots and finally the conversion, first, to the yard and then to the metre by an intermediate series.

Guillaume.

'The length of bar \mathbf{A}, as determined at Sévres, expressed in yards is accordingly

$$
3 \cdot 333,33 \because
$$

The corresponding lengths of I_{S} and I_{B} determined from the observations of Nov. 1907-Tan. 1908 are as follows:-

$$
\begin{aligned}
\mathrm{I}_{s} & =3 \cdot 333,415 \mathrm{yds} \\
\mathrm{I}_{H} & =3 \cdot 333,529 \mathrm{yds} .
\end{aligned}
$$

The later obscrvations of Nov.-Dec. 1905 were not used as the thermometer corrections had not been redetermined.

All the above are for temperature $62^{\circ} \mathrm{F}$.

APPENDIX No. 2

Analysis of temperature readinys cluring the comparisons of bars I_{S} and \mathbf{A}, Vov. 1907-Jan. 1908.

set No.	Find of Вッ.	Bar A				$\mathrm{Hur}^{\text {I }}$			
		Air spuce temperatiore \qquad	Bar temperal ure $\|$	$\begin{aligned} & \text { Difference } \\ & \text { Bur-air } \\ & \text { equere } \end{aligned}$	Difference $\begin{gathered} \mathbf{E}-\mathbf{W} \\ \text { for Bur } \end{gathered}$	Air space temperalure	Bar temperature	Differeace Bar-Air space	$\begin{aligned} & \text { Difference } \\ & \text { li-W } \\ & \text { for Bar } \end{aligned}$
1	E W	$58^{\circ} \cdot 60$ 59	58.38 58.14	-0.22 -1.11	+0.19		5.88 58.83	-0.12 -0.37	-0.15
2	$\stackrel{\mathbf{E}}{\mathbf{W}}$	$\begin{array}{r}59 \\ 59 \\ \hline 9.5\end{array}$	58.56 58.40	-0.14 -0.7	+0.16	5905 5880	58838	-0072 -0.35	-0.12
3	W	58.30 58.15	$58 \cdot 00$ 5810	-0.30 -0.05	-0.10	58.35	$58 \cdot 25$ 58.40	-0.10 +0.25	
4	$\begin{aligned} & \text { f } \\ & \text { W } \end{aligned}$	$58 \cdot 10$ 5865	5796 54.01	-0.14 -0.64	-0.0.5	58.3 58.	$58 \cdot 28$ 58.39	-0.02 -0.01	-0.11
5	$\begin{aligned} & \mathrm{E} \\ & \mathrm{~W} \end{aligned}$	58.70 38.75	$\begin{aligned} & 5^{8 \cdot 3.3} \\ & 5^{8} \cdot 2 . \end{aligned}$	-0.3:	+0.10	$58 \cdot 70$ 58.5	5×40 58.46	-0.30 -0.09	-0.06
8	$\begin{gathered} \mathrm{W} \\ \mathrm{~W} \end{gathered}$	$\begin{aligned} & 88 \cdot 30 \\ & 59 \cdot 15 \end{aligned}$	$\begin{aligned} & 58 \cdot+4 \\ & 58 \cdot 28 \end{aligned}$	+0.14 -0.87	+0.16	$58 \cdot 90$ $58 \cdot 90$	$5^{8}+3$ $5^{8 \cdot 54}$	-0.7 -0.36	-0.11
7	$\underset{\mathbf{W}}{\mathbf{E}}$	57.85 5095	$\begin{aligned} & 5780 \\ & 57 \cdot 70 \end{aligned}$	+0.04 -0.16	+0.10	$58 \cdot 10$ $8 \cdot 08$	$58 \cdot 04$ 58.4	-0.06 +0.06	- 0.10
8	$\begin{aligned} & \text { F } \\ & \mathbf{W} \end{aligned}$	$\begin{aligned} & 58 \cdot 05 \\ & 58 \cdot 15 \end{aligned}$	57.3	-0.30 -0.1	+0.01	$58 \cdot 25$ $58 \cdot 20$	5800 5810	-0.25 -0.10	-0.10
9	F \mathbf{W}	$58 \cdot 10$ 58.5	$5: 95$ $5 \cdot 86$	-0.15 -0.69	+0.09	$58 \cdot 60$ 5810	58.05 58.19	-0.55 +0.09	-0.14
10	$\underset{\mathrm{w}}{\mathrm{~F}}$	58.30 58.70	$\begin{aligned} & 58 \cdot 05 \\ & 58 \cdot 05 \end{aligned}$	-0.25 -065	000	5825 38.3	58 38 38 8	-0.16 -0.05	-0.19
11	Fi	$\begin{aligned} & 5: 95 \\ & 57 \cdot 65 \end{aligned}$	$\begin{aligned} & 5 \cdot 64 \\ & 5 i+3 \end{aligned}$	-0.31 -0.22	+0.21	57-65		$\begin{aligned} & +0.10 \\ & -0.04 \end{aligned}$	-0.09
12	$\begin{gathered} \mathbf{E} \\ \mathbf{W} \end{gathered}$	$\begin{aligned} & 5795 \\ & 58 \cdot 05 \end{aligned}$	5745 57.4	-0.50 -0.36	-0.04	58.18 57.85	$5 \% 99$ $5 \% 8+8$	-0.39 -0.01	--0.03
13	$\begin{gathered} \text { E } \\ \text { W } \end{gathered}$	5795 58.95	576 5764	-0.26 -0.91	+0.03	58.5 5780	$\begin{aligned} & 57 \cdot 88 \\ & 57 \cdot 94 \end{aligned}$	-0.37 +0.24	-0.06
14	$\begin{gathered} \text { E } \\ \mathbf{w} \end{gathered}$	$\begin{aligned} & 5^{8 \cdot 0} \\ & 5^{8 \cdot 45} \end{aligned}$	$\begin{aligned} & 5781 \\ & 57 \% ;+ \end{aligned}$	-0.16 -0.71	+0.5	$58 \cdot 35$ $58 \cdot 10$	5795 5995	-0.40 -0.15	$0 \cdot 00$
15	$\begin{gathered} \mathrm{F} \\ \mathbf{W} \end{gathered}$	5715 .765	57 37	+0.14 -0.15	+0.09	5740 575	5750 5754	+0.10 -0.01	-0.04
16	$\underset{\text { W }}{\mathbf{E}}$	5745 576	57.30	-0.15 -0.61	+0.16	$50 \cdot 88$ 57.75	$\begin{aligned} & 5: 50 \\ & 5755 \end{aligned}$	-0.38 -0.20	-0.05
17	$\begin{aligned} & \mathbf{E}_{\mathbf{W}} \\ & \mathbf{W} \end{aligned}$		5769 37.38	+0.10 -0.37	+0.31	$57 \cdot 65$ $57 \cdot 80$	575 5764	$\begin{aligned} & -0.30 \\ & -0.16 \end{aligned}$	-0.0n
18	$\underset{\underset{\mathbf{W}}{\mathbf{K}}}{ }$	$\begin{array}{ll} 37 & 0 \\ 5 \pi & 65 \end{array}$	575 37	-0.40 -0.14	+0.04	$58 \cdot 10$ 5795	5760 5763	-0.30 -0.32	-0.0.3
10	$\begin{gathered} \mathrm{F} \\ \mathbf{W} \end{gathered}$	5708 56.95	$\begin{array}{cc}56.8 .3 \\ 36 & 7 .\end{array}$	-0.22 -0.22	+0 10	5720 5170	$\begin{aligned} & 56 \cdot 90 \\ & 56 \cdot 90 \end{aligned}$	-0.30 -0.20	$0 \cdot 00$
20	$\begin{aligned} & \mathbf{W} \\ & \mathbf{W} \end{aligned}$	$\begin{aligned} & 5715 \\ & 57 \cdot 45 \end{aligned}$	$\begin{aligned} & 56 \cdot 96 \\ & 56 \cdot 80 \end{aligned}$	-0.19 -0.65	+0.16	5725 5715	56 56 56 69	-0.30 -0.16	-0.04

APPENDIX No. 2-(contd.)

A nalysis of temperature readings during the comparisons of bars I_{s} and A, Nov. 1907-Jan. 190s' (contd.).

	Bur A					$\mathrm{Har}^{\prime} \mathrm{I}_{S}$			
Set No.	End ol' Bar	Aい spater lemperature \|	13ar tumperature	Diflerence Bar-Air apace	$\begin{aligned} & \text { Differener } \\ & \mathbf{E}-W \\ & \text { for Har } \end{aligned}$	Air apmee	Bnr Iemperature	Difference Mar-Air spuce	$\begin{gathered} \text { Difference } \\ \text { E-W } \\ \text { for Bar } \end{gathered}$
21	li W	50 $50 \cdot 6$ $56 \cdot 75$	560 568 $56+1$	-0.17 -0.34	+0.07	$5 \% 10$ $56 \cdot 75$	0 56 56.85	-0.35 +0.10	-0.10
22	$\stackrel{1}{W}$	5665 $56 \cdot 5$	$56 \cdot 36$ $56 \cdot+6$	-0.09 -0.29	$+0.10$.3705 .7800	$56 \cdot 78$ $56 \cdot 78$	-0.27 -0.22	0.00
23	W W	$56 \cdot 95$ 57	(1) $\begin{aligned} & 50 \cdot 89 \\ & 56\end{aligned}$	-0.06 -0.4	+0.19	5725 $57 \cdot 10$	$56 \cdot 86$ $56 \cdot 85$	-0.39 -0.25	+0.01
$\because \cdot 1$	W	5715 576	56.88	-027 -0.37	+0.10	$57 \cdot 25$ $57^{\prime} \cdot 15$	$56 \cdot 89$ $56 \cdot 86$	-0.36 -0.29	$+0.03$
53	W	$6+10$ $6+0.3$	$6.3 \cdot 81$ 6.8 .80	-0.29 -0.2 .3	+0.01	$6+20$ $6+10$	$6+90.3$ $6+09$	-0.17 -0.01	-0.06
5.1	W	$6+00$ $6+15$	6.398 6.880	-0.09 -0.35	+0.11	$6+20$ $6+10$	$6+00$ $6+10$	-0.20 0.00	-0.10
[5]	W W	6590 659	$65 \cdot 0.3$ $6+9.3$	-0.87 -0.82	+0.10	$65 \cdot 5.5$ 6545	$\begin{aligned} & 6+90 \\ & 65 \cdot 11 \end{aligned}$	-0.65 -0.34	-0.21
$51 ;$	W	$\begin{gathered} 6.9 .9 \\ 6.9 .9 \end{gathered}$	$\begin{aligned} & 6508 \\ & 6+08 \end{aligned}$	-0.82 -0.99	$+0.12$	$616 \cdot 15$ 616.10	6,25 6,31	-0.90 -0.79	-0.06
37	W	68 68 68	\| 688	-0.45 -0.10	+0.05	619.5 68.95	$\begin{aligned} & 68 \cdot 50 \\ & 68 \cdot 6.3 \end{aligned}$	-0.65 -0.32	-0.13
5N	IV.	68 68 68	$68 \cdot 69$ $68 \cdot 75$	-0.26 -0.30	-0.06	$60 \cdot 15$ 68	$\begin{aligned} & 18 \cdot 75 \\ & 68 \cdot 95 \end{aligned}$	-0.10 +0.20	-0.20
69	$\stackrel{\text { W }}{W}$	688 68 8	\vdots \vdots 68.88	-0.17 0.00	+0.0.3	(19) 15 68.90	$\begin{aligned} & 68 \cdot 83 \\ & 68 \cdot 95 \end{aligned}$	$\begin{array}{r} -0.32 \\ +0.05 \end{array}$	-0.12
(3)	IV.	68.95 68.95	$68 \cdot 90$ 68.78	-0.05 -0.17	+0.12	69% 69.00	$\begin{aligned} & 68 \cdot 89 \\ & 68 \cdot 95 \end{aligned}$	-0.26 -0.05	-0.06
(i)	$\stackrel{1 i}{w}$	64.70 6505	$6+88$ 64.08	+0.18 -0.07	-0.10	$65 \cdot 5$ $65 \cdot 10$	$\begin{aligned} & 65 \cdot 14 \\ & 65 \cdot 35 \end{aligned}$	$\begin{aligned} & +0.09 \\ & +0.25 \end{aligned}$	-0.21
10	$\begin{gathered} 10 \\ W^{\prime} \end{gathered}$	$6+90$ 6505	$\begin{aligned} & 6+8 \cdot 81 \\ & 6+\cdot 8 ; \end{aligned}$	-0.09 -0.32	-0.02	$65 \cdot 20$ 64.95	$\begin{array}{r} 6: \cdot 3 \\ 6: 3 \end{array}$	$\begin{array}{r} -0.07 \\ +0.28 \end{array}$	-0.10
1i:3	$\begin{aligned} & W_{i} \\ & W \end{aligned}$	$\begin{aligned} & 65 \cdot 0 \\ & 65 \cdot 05 \end{aligned}$	$\begin{aligned} & 64.91 \\ & 6+90 \end{aligned}$	-0.19 -0.15	+0.01	6500 $6-15$	$\begin{aligned} & 6: 00 \\ & 6515 \end{aligned}$	0.00 0.00	-0.15
6.4	$\begin{aligned} & \mathrm{E} \\ & \mathrm{~W} \end{aligned}$	0,00 $6+5$	$\begin{aligned} & 6+86 \\ & 6+160 \end{aligned}$	-0.14 +0.25	+0.06	6,20 6500	$\begin{aligned} & 6_{5} \cdot 00 \\ & 65 \cdot 15 \end{aligned}$	-0.20 +0.15	-0.15
959	if	$65 \cdot 00$ $6+95$	$\begin{aligned} & 6+75 \\ & 64 \% 3 \end{aligned}$	-0.25 -0.20	0.00	$65 \cdot 5$ 650	$\begin{aligned} & 6,-00 \\ & 6,90 \end{aligned}$	-0.15 -0.51	+0.01
66	$\begin{gathered} \mathbf{E} \\ \mathbf{W} \end{gathered}$	1500 $65 \cdot 15$	6480 64%	-0.20 -0.10	+0.05	6.510 6.510	$\begin{aligned} & 65 \cdot 00 \\ & 6490 \end{aligned}$	-0.10 -011	+0.01
137	$\begin{aligned} & \text { I: } \\ & \mathbf{W} \end{aligned}$	$\begin{aligned} & 65 \% \\ & 6565 \end{aligned}$	$\begin{aligned} & 6.2 .3 \\ & 65.19 \end{aligned}$	$\begin{aligned} & -0.47 \\ & -0.46 \end{aligned}$	+0.04	6.55 4.60	$\begin{aligned} & 65 \cdot 25 \\ & 65 \end{aligned}$	-0.30 -0.22	-0.13
lis	$\begin{aligned} & \mathbf{i n} \\ & \mathbf{W} \end{aligned}$	6590 6595	1.5 .35 6.519	-0.55 -0.56	+0.16	$65 \cdot 95$ 65.35	6.535 6.54 .3	-060 $+0.08$	-0.08
19	li	4-95 695	65.74 6.60	-0.21 -0.35	+0'14	66.00 06100	$\begin{aligned} & 65 \cdot 80 \\ & 65 \cdot 84 \end{aligned}$	$\begin{aligned} & -0.20 \\ & -0.16 \end{aligned}$	-0.0.
70	$\stackrel{\mathbf{N}}{\mathbf{W}}$	$6: 90$ $66 \cdot 05$	$\begin{aligned} & 65 \cdot 6 \\ & 65 \cdot 5 \end{aligned}$	-0.27 -0.19	+0.07	$\begin{aligned} & 616 \cdot 50 \\ & 65 \cdot 80 \end{aligned}$	$\begin{aligned} & 65 \cdot 81 \\ & 6590 \end{aligned}$	$\begin{aligned} & -0.34 \\ & +0.10 \end{aligned}$	-0.09

APPENDIX No. 3
Alualysis of temperature readings during the comparisons of bars I_{S} and A , Nov. 1907—Jon. 1908.

$\begin{aligned} & \text { set } \\ & \text { so. } \end{aligned}$	Bar A				$\mathrm{Bur}_{\mathrm{s}}$			
	Mannair space temperature	Cliange: set to set	$\begin{gathered} \text { Monn } \\ \text { bur } \\ \text { temperature } \end{gathered}$	Change: set to set	Mean air spuce temperature	Change: set to set	Mun bur lempera ture	Change: set to set
1	$58 \cdot 98$		5828		58.50		$58 \cdot 26$	
2	59*3,3	+0.35	$58 \cdot 48$	+0. 20	$88 \cdot 9$	+0.4.3	58.39	- $0 \cdot 1.3$
3	58•2,3	-1.10	$58 \cdot 05$	$-0.4 .3$	58.2;	-0.68	$58 \cdot 3.3$	-0.06
1	$58 \cdot 38$	+0.15	$5 \cdot 98$	-0.07	58.35	+0.10	58•34	+0.01
5	58.73	+0.35	58-28	$+0^{\circ} 30$	$58 \cdot 63$	+0.28	$58 \cdot 3$	+0.09
(i)	$58 \cdot 73$	$0 \cdot 00$	$5^{8 \cdot}{ }^{36}$	+0.08	58.90	$+0.27$	$58+8$	+0.0 3
$\overline{7}$	5790	-0.83	$5 \cdot 8.8$	-0.52	58.09	-0.81	$58 \cdot 09$	-0.39
8	$5^{8 \cdot 10}$	+0. 20	5775	-0.09)	$5^{8 \cdot 23}$	+0.14	$58 \cdot 05$	-0.04
9	$5^{8 \cdot 3} 3$	+0. 23	57.90	$+0.15$	58'35	$+0.12$	58.12	+0.07
10	50	+0.17	$5^{8 \cdot} 0^{5}$	+0.15	58•29	-0.06	58•19	$+0.07$
11	$59 \cdot 80$	-0.70	57's+	-0.51	577	-0.52	57%	-0.40
12	\$8.00	+0. 30	$35 \cdot 47$	-0.07	$58 \cdot 02$	+0.25	57.81	+0.02
18	58.25	+0.25	$37 \cdot 67$	+0. 20	\$8.08	+0.06	57.91	+0.10
14	58•25	$0 \cdot 00$	5i.82	+0.15	$58 \cdot 23$	+0.15	57.95	+0.04
15	57'40	-0.85	53'25	-0.57	5;'48	-0.75	57:52	-0.4.3
10	57'60	+0.20	5722	-0.03	57-82	+0.34	57:33	+0.01
17	$57 \cdot 67$	+0.0i	57's4	+0. 32	57:83	+0.01	37.60	+0.0\%
18	$57^{\text {Ro }}$	+0.13	57'3.3	-0.01	$58 \cdot 0.3$	+0. 20	$5: 62$	+0.02
19	3*00	-0.80	$56 \cdot 78$	-0.75	5715	-0.88	$56 \cdot 90$	-0.72
20	5730	+0.30	56.88	+0.10	53:20	+0.05	56.97	$+0.07$
21	56.70	-0.60	56.45	$-0.4 .3$	$56 \cdot 9.3$	-0.27	$56 \cdot 80$	-0.17
22	$56 \cdot 70$	$0 \cdot 00$	$56 \cdot 5$	+ 0. 0 or	57'0.3	+0.10	$56 \cdot 78$	-0.02
23	57*03	+0.3.	$56 \cdot 79$	+0.28	57-18	+0.15	$56 \cdot 86$	+0.08
24	3:3	+0.10	$56 \cdot 83$	+0.04	$57 \cdot 20$	$+0.02$	56.88	+0.02
53	$6+07$		6.381		64.15		64.06	
54	64.08	+0.01	$6.3 \cdot 86$	+0.03	64.15	$0 \cdot 00$	$6+0 ;$	-0.01
55	$66_{5} 8$	+175	6.199^{8}	+ 1-12	65×3	+1.35	6-501	+0.96
\%;	65:9.:	+0.10	65.02	+0.04	$66 \cdot 1.3$	$+0.6 .3$	$65 \cdot 28$	+0.27
57	68.90	+2.97	$68 \cdot 47$	+3.45	69.05	+2.92	$68 \cdot 57$	$+3 \cdot 29$
68	68.95	$+0.05$	68:7	$+0.25$	68.95	-0.10	68.8:	$+0 \cdot 28$

APPENDIX No. 3-(contd.)

Analysis of temperature readings during the comparisons of bars I_{S} and A, Nov. 1907-Jan. 1909 (contd.).

SctNo.	Bar A				Bnr ${ }_{\text {S }}$			
	Mean air space temperaturo	Change: set to set	Mean bar tomperature	Change: set to get.	Mean air spuce temperature	Change: set to sel.	Mean tar temperia- ture	Chunge: sot 10 sec
59	68.85	-0.10	$68 \cdot 77$	$+0.05$	$6{ }^{\circ} \cdot 0 \cdot 3$	+0.08	68.89	+0.04
60	68.95	+0.10	68.84	$+0.07$	69.08	+0.05	$68 \cdot 92$	+0.0.3
61	$6+88$	$-4 \cdot 07$	$6+9.3$	-3.91	65.08	-4.00	65'25	-3.67
¢2	$64 \cdot 98$	+0.10	$6+82$	-0.11	$65 \cdot 08$	0.00	65-18	-0.07
63	$65 \cdot 08$	+0.10	$64 \cdot 90$	+0.08	65.08	0.00	65-08	-0.10
64	$64 \cdot 78$	-0.30	$6_{+} \cdot 8_{3}$	-0.07	65:10	$+0.02$	65-08	$0 \cdot 00$
65	64.98	+0.20	$6+75$	-0.08	$65 \cdot 3.3$	$+0.23$	65:00	-0.08
60	65.08	+0.10	$64 \cdot 78$	$+0.03$	65-10	-0.23	$6+99$	-0.01
67	$65 \cdot 68$	+0.60	$65 \cdot 21$	$+0.43$	$65 \cdot 58$	$+0.48$	65.32	+0.33
68	$65 \cdot 3.3$	$+0.15$	65.2\%	+0.06	65.65	+0.07	65.39	+0.07
69	65.95	+0.12	65.67	+0.40	66-00	$+0 \cdot 35$	65.82	$+0.43$
70	$65 \cdot 08$	$+0.03$	65.59	-0.08	$65 \cdot 98$	-0.02	$65 \cdot 86$	+0.04

[^0]: * A connection with Rusaian Triangulation has been completed in 1913.
 † A more complete set of atnodarde together with the necessary comparator apparatus has since been acquired.

[^1]: Mean value of $I_{B}-A$ (micrometer heads turued away from one another) ... $19+50 \mathrm{~m} . \mathrm{m}^{\prime}$
 $\ldots \quad 58^{\circ} \cdot 94 \mathrm{~F}$.

[^2]: $8 \mathrm{I} .44 \mathrm{~m} . \mathrm{m}^{2}$
 $62^{\circ} \mathrm{O} .91 \mathrm{~F}$.

